
Trabalho de Conclusão de Curso II – Engenharia Elétrica – CEFET-MG

1

Resumo —Algoritmos de Inteligência Artificial (IA) baseados
em Deep Learning representam um tópico de grande complexidade
cuja compreensão é de suma importância para a ciência e
tecnologia do futuro próximo. No presente trabalho foi
desenvolvida uma rede neural convolutiva (CNN) capaz de
reconhecer faces humanas. Cada rosto em uma foto é detectado e
extraído por um algoritmo MTCNN (Multi-Task Cascaded
Convolutional Neural Network). Cada face detectada atravessa a
CNN FaceNet Inception-Residual que gera um vetor de 128 valores
de saída, utilizado para reconhecer as identidades presentes na
imagem. Isto é possível pois a IA foi treinada para fazer com que
vetores de imagens de diferentes pessoas possuam uma Norma
Euclidiana maior do que os vetores de fotos de uma mesma pessoa.
Observou-se que a metodologia aplicada foi capaz de alcançar até
87% de assertividade no reconhecimento.

Palavras-Chave — Deep Learning, Inteligência Artificial,
Reconhecimento Facial, Visão Computacional

I. INTRODUÇÃO
NN, do inglês Convolutional Neural Network, é uma rede
 neural que é estruturada realizando conexões entre suas

camadas através de um filtro e uma operação de convolução.
Tais arquiteturas representam as mais avançadas Inteligências
Artificiais de Visão Computacional (VC) [1, 2, 3, 4]. Uma
aplicação da VC é o reconhecimento facial, cuja acurácia é
responsável pela segurança de sistemas vitais como destravar
telefones celulares e realizar pagamentos.

Apesar de recentes avanços na pesquisa em Visão
Computacional no CEFET-MG [5, 6, 7], pouco esforço está
sendo direcionado para a compreensão profunda e melhoria do
funcionamento de arquiteturas de reconhecimento baseadas em
Deep Learning (DL)[3].

É evidente a tendência de se aplicar tecnologias baseadas em
Machine Learning e Deep Learning em metodologia de caixa
preta [5, 6]. Assim abre-se espaço para a realização de novas
pesquisas no nível superior que tenham como foco o
aprofundamento da compreensão do funcionamento destes
algoritmos.

Especificamente sobre o trabalho desenvolvido em [5], a
inteligência aplicada para realização do reconhecimento foi
LPBH (Local Binary Pattern Histograms) e, para detecção,
utilizou-se Haar Cascade. De acordo com estudos relevantes em
Visão Computacional estas não representam o estado da arte
destas tecnologias [1, 2, 3, 4].

Tal fato é verificado ao se comparar os melhores resultados
obtidos por uma tecnologia de reconhecimento à base de LBP

(Local Binary Pattern) [8] àqueles obtidos por inteligências
baseadas em CNN’s [1, 2, 4], na base de dados LFW (Labeled
Faces in the Wild) [4], que é tida como parâmetro por notórios
membros da comunidade científica de visão computacional [1,
8]. Enquanto a metodologia LBP de Chen et al. [8] alcançou
uma acurácia de 95,17%, Taigman et al. [1] alcançou 97,35% e
Schroff et al. [2] alcançou 99,63%, ambos aplicando CNN’s.

Tendo em vista estes fatos é proposto no presente trabalho
que se utilize da exploração a fundo do funcionamento de
CNN’s realizada na primeira parte do trabalho de conclusão de
curso [3] para desenvolver uma inteligência artificial baseada
nesta tecnologia. Otimizando-se, assim, a performance de
reconhecimento de [5] através da técnica que representa o
estado da arte do reconhecimento facial e da visão
computacional.

De antemão, para facilitar a aplicabilidade comercial do
sistema, definiu-se que apenas 3 fotos de treinamento seriam
utilizadas para cada pessoa. O número de fotos foi definido
através de brainstorming em busca de um valor que seria
considerado razoável para a maioria das pessoas, do ponto de
vista de experiência do usuário.

Além disso, determinou-se que o tempo de cadastramento
deveria ser o mínimo possível. Estes parâmetros foram
definidos tendo em mente um sistema de segurança comum que
possa se basear em CNN’s, visto que se a aplicação for
confiável o suficiente para sistemas de segurança, também será
aplicável a outros sistemas que possuam exigências menos
rígidas. Vale ressaltar que sistemas de segurança comumente
utilizam diferentes métodos com resultados não
correlacionadas para confirmar uma identidade, podendo ser
este trabalho, um destes.

Os resultados desejados foram obtidos com sucesso, tendo
este trabalho diminuído em 97% a quantidade de dados
necessários para cadastrar cada pessoa, em comparação com
[5]. Foi alcançado também um baixo tempo de treinamento por
identidade de 1,150 s e uma assertividade no reconhecimento
de 87% em determinadas condições.

Otimização de algoritmo de Reconhecimento
Facial via aplicação de arquitetura FaceNet

Residual baseada em Deep Learning
M. Veloso Dias, CEFET-MG

C

Trabalho de Conclusão de Curso submetido para análise da banca
avaliadora na data 17/09/2020.

M. V. Dias, é formando em Engenharia Elétrica no Centro Federal de
Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brasil (e-mail:
mattheusveloso2@hotmail.com).

Trabalho de Conclusão de Curso II – Engenharia Elétrica – CEFET-MG

2

II. REVISÃO BIBLIOGRÁFICA

A. Visão Computacional e o Reconhecimento facial
Visão Computacional é a área de pesquisa que permite que

computadores exerçam funções primárias que são realizadas
pelos olhos humanos. A detecção de objetos e o
reconhecimento facial, por exemplo, são subáreas da VC [9].

Reconhecimento facial é responsável por dizer a qual
identidade pertence certa imagem. Tal procedimento é feito
comparando-se a imagem em questão a um dado banco de
dados de pessoas anteriormente cadastradas [10].

É importante diferenciar reconhecimento facial de
verificação facial. Verificação é um procedimento mais simples
que define se duas imagens pertencem à mesma identidade ou
não. A verificação pode também ser utilizada como parte do
algoritmo de reconhecimento através de uma comparação com
todas as imagens do banco de dados.

 A.1) Falsos Positivos e Falsos Negativos

O maior problema que um sistema de controle de acesso pode
gerar é conceder acesso a uma pessoa não autorizada pois este
acredita que a pessoa em análise da VC seja alguém que está
cadastrado em seu banco de dados. Denomina-se tal problema
de Falso Positivo. Um sistema de reconhecimento facial é
propício a gerar falsos positivos se não conseguir discernir entre
duas pessoas com alto grau de certeza.

Falsos negativos são problemas muito menos graves, uma
vez que se tratam de negar acesso a uma pessoa autorizada. É
bastante provável que tal pessoa consiga tentar novamente e ser
reconhecida pelo sistema com sucesso, sendo perda de tempo o
prejuízo máximo causado. Apesar de existirem exceções a esta
regra, este trabalho priorizará a redução de falsos positivos
mesmo que isto ocasione em um aumento de falsos negativos.

B. Treinamento de Redes Neurais
Redes neurais são um algoritmo de Machine Learning que

possuem camadas ocultas interconectadas algebricamente,
além das camadas de entrada e saída [11]. Uma rede neural com
diversas camadas ocultas é denominada de Deep Learning.

As camadas ocultas possuem operadores que recebem as
saídas (ativações) das camadas anteriores, multiplicam-nas por
uma matriz de pesos, somam ao resultado um valor de viés, e
então, obtém um resultado final, aplicando uma função não
linear (função de ativação, normalmente ReLU, Tangente
hiperbólica ou Sigmoid [12]). A equação (1) demonstra,
algebricamente a ativação (resultado) de uma camada oculta a
partir de suas entradas e parâmetros.

𝐴𝐴𝑛𝑛 = 𝑓𝑓(𝑊𝑊𝑛𝑛 ∗ 𝐴𝐴𝑛𝑛−1 + 𝐵𝐵𝑛𝑛)
(1)

 Onde 𝐴𝐴𝑛𝑛 é a matriz de ativações da camada atual (n), 𝑊𝑊𝑛𝑛 a
matriz pesos desta camada, 𝐴𝐴𝑛𝑛−1 a matriz de ativações da
camada anterior, 𝐵𝐵𝑛𝑛 a matriz de vieses da camada atual e 𝑓𝑓() a
função de ativação. Se a matriz pesos representar a conexão de
todas as ativações da camada anterior a todas as ativações da
camada seguinte, tem-se uma camada denominada de
completamente conectada, que é o tipo de camada clássico de
redes neurais.

É necessário que uma rede neural receba treinamento prévio
para que possa aprender a executar uma atividade específica
[12]. Este treinamento pode ser organizado de duas formas: na

primeira, engenheiros de software definem quais características
a rede neural deve procurar em uma determinada entrada e, a
partir destas, aprender a solucionar o problema em questão. Um
exemplo seria medir a distância entre os olhos e cor da pele para
ser capaz de reconhecer a qual pessoa pertence determinada
foto. Estas e outras características quantitativamente
compreensíveis ao raciocínio humano são consideradas
“definidas manualmente” (hand-crafted) e foram a base dos
algoritmos de machine learning até a chegada da Big Data.

O segundo método de treinar uma rede neural é não limitar
seu funcionamento a características definidas manualmente e
permitir que esta aprenda como resolver o problema em questão
somente a partir dos dados que utiliza. Este tipo de tática
funciona melhor que o anterior num cenário onde há
abundância de dados de treinamento [1, 10], explicitando a
importância da Big Data.

Os dados de treinamento para algoritmos de classificação são
uma base de dados com entradas e saídas corretamente
rotuladas [10]. No caso do presente trabalho, por exemplo, a
entrada da rede neural são as informações em RGB dos pixels
de uma imagem e a saída é a identidade da pessoa à qual
pertence a imagem.

Previamente a qualquer aprendizado, a rede neural fará
previsões completamente aleatórias para diferentes entradas.
Entretanto, definindo-se uma função perda (Loss) para todos os
resultados da base de dados, é possível calcular a derivada
parcial de cada variável (pesos e vieses) na rede neural em
relação a esta. Tal cálculo de derivadas é denominado de Back-
Propagation.

Tais derivadas formam um gradiente multidimensional que
aponta para o valor mínimo de perda. A cada iteração de
treinamento a rede neural aprende a se aproximar deste valor
mínimo global de perda, que representa o valor que pode ser
alcançado que apresente a maior quantidade de acertos na base
de dados de treino [12].

Uma rede neural possui também parâmetros não-treináveis
que necessitam ser escolhidos previamente. Tais parâmetros
são denominados de hiperparâmetros [12].

C. Redes Neurais Convolucionais
Uma CNN é um tipo específico de rede neural que possui

camadas do tipo convolucionais e pooling no lugar de camadas
completamente conectadas [3]. Os pesos 𝑊𝑊𝑛𝑛 destas camadas,
que vão a treinamento, são os valores dentro dos filtros de cada
camada. A Figura II.1 traz um exemplo da camada
convolucional destacando o procedimento de convolução.

Vale ressaltar os hiperparâmetros que devem ser escolhidos
para estas camadas. Estes são as dimensões e quantidades dos
filtros (f), o stride (s) e o padding (p).

Um valor 6*(f=2) indica que serão aplicados 6 filtros de
dimensões 2x2. Já um valor s=2 indica que o passo dado pelo
filtro nas dimensões de 𝐴𝐴𝑛𝑛−1 será de dois em dois pixels, como
na Figura II.2. A Figura II.1 é um exemplo de s=1. O padding,
por sua vez, indica quantos pixeis de valor 0 serão adicionados
a cada volume antes da convolução. Ele pode ser “válido” ou
“semelhante”, p=0 (válido) é representado pelas figuras II.2. e
II.1, onde não há padding e o volume diminui suas dimensões
após a convolução. Já o padding “semelhante” (same) adiciona
linhas e colunas até fazer com que a convolução gere um
volume de dimensões semelhantes ao da camada anterior.

Trabalho de Conclusão de Curso II – Engenharia Elétrica – CEFET-MG

3

Figura II.1 – Camada Convolucional, com filtro 3x3, padding

válido e stride 1, adaptada de [13]

As camadas de pooling diferenciam-se das convolucionais
pois seu filtro procura qual o valor máximo ou médio dentro de
sua área de aplicação (max pooling ou average pooling,
respectivamente). Um exemplo pode ser visto na Figura II.2.

Figura II.2 – Camada Max-pooling com filtro 2x2 e stride 2

obtida de [13]

Um exemplo de rede neural convolucional pode ser
encontrado na Figura II.3. CNN’s tem, em seu final, a
vetorização das ativações de camadas convolucionais na forma
de camadas completamente conectadas que reduzem a
quantidade de valores nos vetores e uma unidade de softmax
que calcula a probabilidade de cada candidato à classificação
[1].

D. Arquitetura Inception-Residual
Um tipo de camada especial criado por Szegedy et al. [14] é

a camada do tipo Inception. Tal camada aplica, nas ativações
das camadas anteriores, filtros de diferentes dimensões e
pooling em paralelo.

Além disso, Szegedy et al. [15] propõe também que se
coloque uma conexão identitária (residual) a cada duas
camadas. Desta forma permite-se que esta tenha ativações
idênticas àquelas presentes duas camadas atrás. Tal fator é
importante, pois o procedimento de descida do gradiente tem
dificuldade em aprender a função identidade em determinada
camada [10]. Tal função é útil algebricamente pois garante que
nenhuma camada adicionada à rede reduzirá a sua performance,

uma vez que ela pode ser simplesmente ignorada. Um exemplo
desta arquitetura residual está na Figura II.4.

Figura II.4 – Bloco Inception-Residual 35

O algoritmo desenvolvido por [15] propõe uma arquitetura
denominada “inception-ResNet-v1” que combina as
características de inception e de redes residuais através de dois
tipos de blocos de camadas. Estes são divididos em blocos
inception-residuais, e blocos de redução. Neste artigo foram
inclusos um exemplo de cada (Figura II.4 e Figura II.5), apesar
de que no trabalho foram implementados todos os 6 blocos
propostos por [15] necessários para criar a “inception-ResNet-
v1”.

Figura II.5 – Bloco Reduction-A

A função dos blocos inception-residuais é aprofundar a rede
neural, permitindo que esta aprenda características mais
avançadas e com melhores capabilidades de reconhecimento. A
função dos blocos de redução é reduzir a largura e altura dos
volumes convolucionais, diminuindo a quantidade de dados.

Figura II.3 - Exemplo de CNN adaptado de [13]

Trabalho de Conclusão de Curso II – Engenharia Elétrica – CEFET-MG

4

Nota-se nas figuras II.4 e II.5 que ambos são blocos de
inception, mas apenas o bloco 35 é residual, devido à sua
conexão direta entre as ativações. No bloco Reduction-A é
apresentado um filtro de concatenação, que tem a função de unir
as saídas das diferentes camadas num formato compreensível
para as camadas seguintes.

E. Algoritmo de otimização: Batch Normalization e Dropout
Um problema do treinamento da rede neural é garantir que

ela não gerará resultados que satisfaçam apenas a base de dados
de treinamento (overfitting), mas também generalizem para
outras bases de dados [16]. Tal problema é medido através da
variância dos resultados.

Traz-se a atenção também ao viés dos resultados, que está
inversamente relacionado à capacidade da rede neural de ser
assertiva para com os seus dados de treinamento. O objetivo de
um algoritmo de otimização é conduzir o treinamento para um
caminho que resulte em baixa variância e baixo viés [16].

Para este fim, tem-se o algoritmo de otimização, que aplica
batch normalization e dropout [16] para realizar o treinamento
mais rápido e assertivo possível [17].

F. Distância L2 (Norma Euclidiana)
Uma forma de se calcular a distância entre dois vetores P e

Q é calcular a Norma Euclidiana ou distância L2 entre eles. A
fórmula de cálculo é representada pela equação (2).

��(𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

(2)
 Onde 𝑝𝑝𝑖𝑖 representa cada valor individual do vetor P, 𝑞𝑞𝑖𝑖
representa cada valor do vetor Q e n é a quantidade de valores
em ambos vetores [18].

G. Detecção via redes neurais
Outra função fundamental da Visão Computacional é

detectar um determinado objeto de interesse em uma imagem
[9]. O exemplo a ser aplicado no presente trabalho é o de
encontrar rostos em uma determinada foto.

Uma rede neural poderia ser treinada para realizar a detecção
e reconhecimento ao mesmo tempo. Entretanto, algoritmos em
Deep Learning necessitam de grandes quantidades de dados
para ser assertivos. Considerando que há uma quantidade muito

maior de dados disponíveis para treinamento de uma rede de
detecção em separado de uma rede de reconhecimento, faz
sentido que se separe a execução destas tarefas em duas etapas
distintas em um determinado algoritmo [10].

III. METODOLOGIA
No presente trabalho construiu-se a aplicação real de uma

rede neural para reconhecimento facial, ou seja, não foram
utilizados métodos que aumentam a performance do algoritmo
que não seriam aplicados em situações reais. A arquitetura geral
desenvolvida é resumida pela Figura III.1.

Tais métodos são utilizados em praticamente todos os artigos
que alcançam o estado da arte da tecnologia [10], entretanto, em
aplicações práticas eles geram muito gasto computacional
desnecessário, com pouco ganho em performance. Um exemplo
é a aplicação de diversos treinamentos de uma mesma rede
neural a uma entrada, para obter diferentes resultados e calcular
a média entre estes.

Desta forma, espera-se que os resultados a serem obtidos
através deste método sejam reproduzidos diretamente em
aplicação prática.

A. A Rede Neural
O método escolhido para realizar o reconhecimento foi

aplicar uma CNN profunda. Tal escolha se justifica uma vez
que esta tecnologia tem sido capaz de alcançar e expandir,
seguidas vezes, o estado da arte do reconhecimento facial [1, 2,
4].

B. CNN de Vetorização para reconhecimento: FaceNet
Inception-Residual

Foi definido que a metodologia a ser aplicada seria
semelhante à FaceNet [2], que é uma arquitetura CNN do tipo
inception. Além disso, a partir dos avanços obtidos por [15]
para facilitar o treinamento com menor poder computacional,
definiu-se que a rede seria também residual.

A justificativa da utilização de camadas inception é que, dado
um grande poderio computacional para treinamento da rede
neural, esta técnica permite que o algoritmo de otimização
encontre que tipo de camada ele deseja ter em cada etapa,
evitando a interferência humana na escolha deste. A presença
de conexões residuais, adicionalmente, reduz o custo
computacional do treinamento de redes profundas, sem que haja
perda de desempenho [10].

Figura III.1 - Representação visual do algoritmo de detecção e reconhecimento facial

Trabalho de Conclusão de Curso II – Engenharia Elétrica – CEFET-MG

5

Já o algoritmo de otimização utilizado é uma descida do
gradiente aplicada em batch-normalization com dropout de
probabilidade de manutenção das ativações igual a 80%. Esta
metodologia permite a maximização da performance de uma
rede neural, sendo também altamente eficiente em evitar o
fenômeno de overfitting [15]. Garante-se, assim, que a rede
neural seja capaz de ter um baixo viés e baixa variância [16].

 B.1) Arquitetura FaceNet

A versão da arquitetura FaceNet aplicada foi desenvolvida
em Keras [17] com inspiração na versão em TensorFlow
disponibilizada por Sandberg [19]. Sandberg realizou o
treinamento da rede FaceNet em três milhões de imagens e
disponibilizou seus dados de treinamento em licença Open-
Source, possibilitando importá-los a este projeto e aplicar uma
rede neural altamente robusta, sem ser necessário treiná-la
novamente.

Com isso os dados de treinamento foram importados em
forma de pesos das conexões neurais. Na verdade, obter uma
base de dados nova de treinamento deste tamanho seria um
grande desafio e diversos dias ou meses seriam necessários para
retreinar a rede neural com o poderio computacional à
disposição da realização desta pesquisa.

Um ponto importante a ser destacado é que a metodologia de
vetorização para reconhecimento utilizada neste trabalho pode
ser denominada de caixa-cinza, visto que a rede neural FaceNet
Inception-Residual construída por [17] é aplicada de forma
inalterada, apesar de que foi realizada extensa exploração sobre
como ela está funcionando internamente. Seria possível alterar
a sua arquitetura interna, via código, porém uma mudança
poderia gerar custos computacionais de treinamento
demasiadamente altos, fugindo ao escopo deste trabalho.

Tem-se então que a arquitetura FaceNet é um tipo de CNN
sem camada softmax no final, cuja saída gera vetores de 128
valores que representam cada face analisada. Estes vetores são
compostos pelas características mais importantes de cada rosto
para fins de reconhecimento facial, definidas via treinamento.

Estas características são distintas das características criadas
manualmente e é virtualmente impossível compreender o que
elas de fato representam, pois são resultados de milhões de
conexões em diferentes camadas de diversos tipos na rede
neural.

Esta é justamente a vantagem de se utilizar uma rede neural
em relação aos demais métodos de machine learning, visto que
a rede neural não está limitada pela escolha manual de
características feita por humanos, como mencionado na seção
II.B.

Enfim, a opção por esta arquitetura se justifica também
porque ela foi capaz de superar os resultados do estado da arte
anteriores testados na base de dados LFW em 30% [2]. A
aplicação mais complexa da arquitetura FaceNet (NN2) atingiu
99,63% de acerto, ultrapassando os resultados de [1], que havia
atingido 97,35%.

Na verdade, a arquitetura NN2 se mantém há 5 anos como o
estado da arte da tecnologia de verificação facial de acordo com
as métricas de comparação do banco de dados LFW [4], quando
comparados apenas artigos publicados e revisados por pares
(peer reviewed).

 B.2) Treinamento da arquitetura FaceNet
Para que a CNN seja capaz de transformar uma imagem RGB

em uma representação de 128 características (denominada
embedding), é necessário que tal instrução esteja explícita como
um objetivo durante o treinamento.

Com este fim, o treinamento foi feito a partir da busca do
mínimo de uma função perda denominada de perda tríplice
(Triplet Loss) via descida de gradiente. Tal função calcula a
distância algébrica L2 se utilizando de três imagens: uma
denominada “Âncora” ou de determinada identidade, outra
denominada “Negativa” que se sabe ser de outra identidade e
uma denominada “Positiva” que se sabe ser da mesma
identidade da âncora em questão [2].

O objetivo do treinamento é aproximar ao máximo a
distância L2 entre os embeddings de mesma identidade e
expandir tal distância entre aqueles de identidades diferentes.
Algebricamente tem-se tal fato exposto na inequação (3).

‖𝑓𝑓(𝑥𝑥𝑎𝑎) − 𝑓𝑓(𝑥𝑥𝑝𝑝)‖22 + 𝛼𝛼 < ‖𝑓𝑓(𝑥𝑥𝑎𝑎) − 𝑓𝑓(𝑥𝑥𝑛𝑛)‖22

(3)
Na inequação (3) tem-se a fórmula para que seja calculada a

perda tríplice para um conjunto de 3 imagens. 𝑓𝑓(𝑥𝑥) representa
uma embedding resultante da aplicação da rede neural em
entrada matricial 𝑥𝑥.

As entradas 𝑥𝑥𝑎𝑎, 𝑥𝑥𝑝𝑝 e 𝑥𝑥𝑛𝑛 representam as imagens âncora (a),
positiva (p) e negativa (n). O operador ‖ ‖22 representa a
norma euclidiana elevada ao quadrado. O termo 𝛼𝛼 é um
hiperparâmetro adicionado a esta equação para garantir que
haja uma distância mínima entre os termos de ambos os lados
da inequação.

Então aplica-se a inequação (3) para todos os N trios 𝑥𝑥𝑎𝑎, 𝑥𝑥𝑝𝑝
e 𝑥𝑥𝑛𝑛 de uma determinada base de dados, obtendo-se, assim, a
função perda a ser minimizada (4).

𝐿𝐿 = ���𝑓𝑓(𝑥𝑥𝑖𝑖𝑎𝑎) − 𝑓𝑓�𝑥𝑥𝑖𝑖
𝑝𝑝��

2
2 − ‖𝑓𝑓(𝑥𝑥𝑖𝑖𝑎𝑎) − 𝑓𝑓(𝑥𝑥𝑖𝑖𝑛𝑛)‖22 + 𝛼𝛼�

+

𝑁𝑁

𝑖𝑖

(4)
Para que haja convergência na descida do gradiente a partir

da equação (4), é necessário que os trios escolhidos representem
casos difíceis, ou seja, imagens de pessoas que naturalmente se
pareçam e gerem distâncias menores entre a imagem âncora e a
negativa [2]. Finalmente, tem-se a otimização realizada a partir
da descida do gradiente calculada através de back-propagation
da função acima.

 B.3) Detalhamento da arquitetura NN3 modificada
A arquitetura aplicada da FaceNet escolhida foi a NN3, que

aceita como entrada imagens recortadas de cada face de
tamanho 160x160x3. Esta foi escolhida em detrimento da NN2,
uma vez que ela representa uma versão com uma acurácia
próxima àquela da rede neural NN2, mas possui como
vantagem uma quantidade exponencialmente menor de
parâmetros, acelerando a execução do código [2, 19].

Todas as camadas da NN3 são colocadas em sequência e
convergem para uma camada totalmente conectada que gera o
vetor de 128 características para cada imagem. A Figura III.2
resume a arquitetura aplicada.

Trabalho de Conclusão de Curso II – Engenharia Elétrica – CEFET-MG

6

Figura III.2 – Arquitetura FaceNet NN3 Inception-residual

completa e resumida.

Como mencionado em II.D, a arquitetura é construída a partir
da aplicação conjunta de blocos Inception Residuais definida
por [15]. Foi necessário o desenvolvimento de camadas de
“Ajuste” e de “Classificação” (vide Figura III.3 e Figura III.4).
Estas etapas fazem o ajuste inicial da imagem na entrada para o
formato 17x17x256 antes do primeiro bloco 35 e recebem a
saída em formato 3x3x1792 do último bloco 8 e a transformam
no vetor desejado (vide Figura III.2).

Figura III.3 – Detalhamento das Camadas de Ajuste, em

sequência de cima para baixo

Figura III.4 – Detalhamento das Camadas de Classificação

 Esta etapa então é representada na Figura III.1 como a etapa
intermediária “FaceNet NN3” e representa a vetorização das
imagens em embeddings 128-dimensionais.

C. Arquitetura MTCNN de detecção
É necessário que a entrada da FaceNet NN3 receba imagens

RGB de 160x160 pixeis, desta forma utilizou-se de uma outra
rede neural denominada de MTCNN para realizar a detecção de
imagens em fotos da base de dados, extrair a face e
redimensioná-la para um tamanho 160x160x3.

Tal rede neural foi desenvolvida por [20] através dos
métodos propostos por Zhang et al. [21] que se utiliza de uma
CNN em cascata treinada para encontrar 5 pontos na face de
uma pessoa em uma foto, e então, encontrar um retângulo na
imagem que contenha a face detectada (Figura III.5). Enfim, tal
face é extraída e prossegue para a CNN de reconhecimento.

Figura III.5 - Pontos localizados (olhos, nariz e cantos da

boca) e retângulo do rosto escolhidos pelo algoritmo. Fonte:
Zheng et al [21]

Foi utilizada uma aplicação do algoritmo de [19] adaptada
para funcionar em Keras por [17]. Diferentemente da
arquitetura CNN de reconhecimento, esta arquitetura MTCNN
de detecção e alinhamento não é o foco deste trabalho, por isso
foi aplicada com uma metodologia de caixa-preta com
resultados analisados empiricamente.

D. Algoritmo de reconhecimento: Análise algébrica dos
vetores em pós processamento

Após uma imagem atravessar as etapas de detecção
(MTCNN) e vetorização (FaceNet), tem-se em mãos um vetor
de 128-bytes para cada face detectada.

O espaço vetorial em que estes vetores existem é 128-
dimensional. Utilizando-se de uma base de dados pré-
cadastrada é possível mapear este espaço multidimensional com
diferentes identidades. Devido à maneira como a CNN foi
treinada, identidades parecidas estarão próximas umas das
outras e identidades distintas estarão distantes.

Classificação
Saída: 128 (embedding)

5x Bloco 8
Saída: 3x3x1792

Reduction-B
Saída: 3x3x1792

10x Bloco 17
Saída: 8x8x896

Reduction-A
Saída: 8x8x896

5x Bloco 35
Saída: 17x17x256

Camadas de Ajuste
Saída: 17x17x256

Detecção MTCNN
Saída: 160x160x3

• 160x160x3

Imagem RGB detectada
(Volume de Entrada)

• 32x Filtro: 3x3| padding válido | stride = 2
• Saída: 79x79x32

Convolucional 1a

• 32x Filtro: 3x3| padding válido | stride = 1
• Saída: 77x77x32

Convolucional 2a

• 64x Filtro: 3x3| padding semelhante| stride = 1
• Saída: 77x77x64

Convolucional 2b

• Filtro: 3x3| padding válido | stride = 2
• Saída: 38x38x64

Max Pooling 3a

• 80x Filtro: 1x1| padding válido | stride = 1
• Saída: 38x38x80

Convolucional 3b

• 192x Filtro: 3x3| padding válido | stride = 1
• Saída: 36x36x192

Convolucional 4a

• 256x Filtro: 3x3| padding válido | stride = 2
• Saída: 17x17x256

Convolucional 4b

• Saída: 17x17x256
Volume de Saída Ajustado

•Entrada: 3x3x1792 -> Saída: 1792

Global Average Pooling

•Entrada: 1792 -> Saída 1792
•Probabilidade de Dropout = 80%

Dropout

•Entrada: 1792 -> Saída: 128 (Embedding)

Completamente Conectada

Trabalho de Conclusão de Curso II – Engenharia Elétrica – CEFET-MG

7

Para cada 3 fotos cadastradas na base de dados como vetores
de cada pessoa, formam-se pequenos clusters de identidades
diferentes no espaço 128-dimensional.

Para realizar o reconhecimento de uma face nova cuja
identidade é desconhecida (IDesc) foi desenvolvida uma versão
modificada do método de K-Nearest Neighbours (KNN) com o
valor de K igual a 2.

O motivo pelo qual se optou por um valor de K igual a 2 e
não igual a 1 é o fato de que desejou-se priorizar um software
que gerasse a menor quantidade possível de falsos-positivos,
tendo em mente um possível sistema de segurança para
aplicação deste algoritmo.

Tal método foi aplicado encontrando-se os dois vetores na
base de dados com menor distância euclidiana até a embedding
𝑓𝑓(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼). Analisam-se então as duas distâncias encontradas, se
ambas forem menores do que um valor limite definido em
código, considera-se que o valor é próximo o suficiente para
acusar detecção de uma pessoa conhecida pelo sistema. Uma
checagem extra é feita para garantir que os dois vetores
encontrados próximos de IDesc são pertencentes à mesma
identidade. Satisfeitas as condições a foto IDesc é então
reconhecida como sendo pertencente àquela identidade, como
na Figura III.6.

O valor limite igual a 1.00 foi escolhido empiricamente com
o mesmo fim de reduzir falsos positivos, caso determinada
aplicação deseje gerar menos falsos negativos, mesmo que gere
mais falsos positivos, é possível também diminuir este valor.
Um valor de K=3 também não é desejável, pois 3 é o número
de fotos cadastradas de uma pessoa no sistema. Se alguma foto
cadastrada for bastante diferente do que a pessoa é hoje, a
distância entre esta foto e a imagem em avaliação será maior
que as restantes, diminuindo a efetividade de reconhecimento
do sistema.

Figura III.6- Exemplo de IDesc para reconhecimento

Na Figura III.6, o algoritmo retornou “Reconhecido” e em
seguida as distâncias entre os dois vetores mais próximos
(Figura III.7). Na sequência ele comparou se a identidade
prevista é a correta, registrando “True”, ou seja, correto. Além
disso foi calculado um score de certeza de 56.6%.

Este score foi criado para facilitar a compreensão para o
usuário final. Tal score funciona da forma apresentada na
equação (5).

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1

2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2
∗ 100%

(5)
Onde Dist2 é a distância de f(IDesc) para o segundo

embedding mais próximo. Para valores de Dist2 menores ou
iguais a 1 (o valor limite definido), o Score será maior ou igual
a 50% e então o algoritmo acusará o reconhecimento. Caso

contrário, se Dist2 for maior que 1, o Score será menor que
50%, fazendo o algoritmo, então, acusar que não houve o
reconhecimento com sucesso.

Acessando a base de dados para compreender com quais
imagens o algoritmo tomou a decisão de reconhecimento da
Figura III.6, tem-se a Figura III.7.

Figura III.7 – Duas imagens do banco de dados cujos vetores

geraram distâncias L2 de 0.7428 e 0.8203 em relação a
f(IDesc).

 De todas as 156 imagens de um banco de dados de 52
identidades, estas foram as imagens mais próximas
encontradas. Como elas pertencem a uma mesma identidade, o
algoritmo acusa o reconhecimento.
 No último caso em que ambas as distâncias sejam menores
que o valor limite, mas não pertencem à mesma identidade no
banco de dados, o algoritmo acusará que não tem certeza quanto
àquela identidade, evitando assim um falso-positivo e
possivelmente gerando um falso-negativo. Nesse caso será
gerada uma saída “incerta” (unsure).

E. Python, Keras e GitHub
 Para realizar a programação, foi criado um repositório do
GitHub TM [22]. Os códigos foram escritos em Python com
base em Keras, TensorFlow-CPU e Numpy. A inspiração para
as aplicações em Keras e TensorFlow das redes neurais foram
obtidas de [17, 19, 23].

IV. RESULTADOS E DISCUSSÕES
Analisou-se a performance da inteligência desenvolvida a

partir de testes feitos em 2 bases de dados diferentes: uma
“natural” (nat), com fotos para reconhecimento em diversas
condições de iluminação de 52 pessoas diferentes, e uma base
de dados “padrão” (std), que se utilizou apenas de fotos claras,
retas e sem acessórios no rosto como óculos escuros e boinas
destas mesmas pessoas.

Destaca-se que tanto nat quanto std foram reconhecidas com
base na mesma base de dados cadastrada (cad) de 3 fotos de
cada pessoa, com um total de 156 fotos cadastradas, de 52
pessoas.

Justifica-se que ambos contextos fossem utilizados para que
se obtivessem resultados, uma vez que em um reconhecimento
menos rigoroso, por exemplo em redes sociais, deve-se
encontrar mais dados próximos à primeira base. Já num sistema
de segurança, espera-se que os dados a serem analisados sejam
padronizados, permitindo que se avalie o desempenho deste
algoritmo em diferentes aplicações.

Na primeira base de dados (nat) os resultados obtidos foram:
• 15,7% de resultados incorretos, sendo 5,7% falsos

positivos e 10,0% falsos negativos;
• 11,5% de resultados considerados “incertos”;
• 72,8% de reconhecimentos corretos.

Trabalho de Conclusão de Curso II – Engenharia Elétrica – CEFET-MG

8

Na segunda base de dados (std) os resultados foram:
• 11,7% de resultados incorretos, sendo 9,1% falsos

positivos e 2,6% de falsos negativos;
• 7,8% de resultados considerados “incertos”;
• 80,5% de reconhecimentos corretos.

Estes resultados são os mais importantes obtidos neste estudo
pois demonstram que a inteligência artificial desenvolvida de
fato funciona.

A grande quantidade de falsos positivos em ambas as bases
de dados demonstra que esta inteligência teria dificuldades para
ser aplicada em sistemas de segurança. A fim de resolver este
imbróglio, pode-se utilizar, paralelamente, outros métodos de
segurança com baixa correlação com a CNN aplicada que possa
aumentar o grau de certeza das decisões. Poderia também ser
elevado o valor de K, cujos efeitos são explorados na seção
IV.E.

A utilização de somente dois métodos não correlacionados
com taxa de falsos positivos semelhante à deste trabalho (5,7%)
alcançaria uma nova taxa de somente 0,32%. Portanto este
trabalho pode ser apresentado, sob esta ótica, no presente
estado. Além disso, um desenvolvimento no alinhamento
prévio à MTCNN é também uma opção para melhorar o
desempenho.

A. Tempo de cadastramento e execução
 A fim de realizar o reconhecimento é necessário que cad
esteja completamente convertida em vetores. Esta conversão foi
considerada como o procedimento de cadastramento. Este é
simplesmente o processo de detectar todas as faces na base de
dados e vetorizá-las.
 A execução, por outro lado, trata-se de detectar rostos em
uma imagem, vetorizá-los e reconhecê-los, como na Figura
III.1.
 O CPU utilizado foi um Intel core i7 3770k a 3,5GHz
acompanhado de 8GB de memória RAM a 1333MHz, um SSD
com velocidade 450MB/s e uma placa de vídeo Nvidia GTX
660. A Tabela I consolida os resultados de tempos de
cadastramento e execução, para o algoritmo desenvolvido e
para a base de dados que possui 52 identidades.

 O tempo total de reconhecimento de uma pessoa demonstra
que a execução é feita em tempo hábil. Assim, este sistema
serviria para a maioria dos sistemas de segurança deste ponto
de vista.
 Uma possível melhoria que pode ocorrer é otimizar a
velocidade do processo de detecção, visto que este ocupa mais
da metade do tempo que o algoritmo necessita para reconhecer
um indivíduo.

 Mesmo assim, aplicações como [24] (cujo código é a base de
[5]) e [17] se utilizam de HAAR Cascade para a detecção, que
consegue realizar detecção em tempo real com uma taxa de 10-
25 frames por segundo. Tal fato serve para exacerbar a melhoria
que seria necessária para que o algoritmo de MTCNN aplicado
no presente trabalho alcançasse a velocidade de processamento
do método concorrente.

B. Problema com Identificação de Asiáticos e Crianças
 Duas falhas relevantes encontradas nos resultados ficam
aparentes ao analisar-se, especificamente, as fotos de pessoas
de etnias orientais e de crianças.

Tal amostragem foi obtida num estudo particular sobre o viés
étnico e etário do algoritmo. Em busca do motivo da alta
quantidade de falsos positivos, encontrou-se que, para adultos
de etnias europeias, americanas e africanas, a taxa de
reconhecimento se mantém próxima da média em 1 desvio
padrão.

Entretanto, com asiáticos, os resultados obtidos foram:
• 50,0% de reconhecimento assertivo;
• 10,7% de resultados “incertos”;
• 39,3% de falsos positivos.

 Tal número altíssimo de falsos positivos indica que este
mesmo algoritmo tem um viés étnico em relação a essas
pessoas. É provável que tal viés seja fruto da base de dados de
treinamento de [19]. Sendo este o caso, um novo treinamento
poderia resolver tal problema.
 Além deste viés, encontrou-se também que o algoritmo é
pouco eficaz para diferenciar crianças. Este resultado também
se deve, provavelmente, a um viés incluso na base de dados de
treinamento. A taxa de acerto do teste etário com crianças foi
de apenas 33,3%.
 Mais especificamente viéses etários e étnicos são frutos de
uma base de dados quando esta possui poucos exemplos destes
para treinamento da rede neural de reconhecimento. Isto é um
problema, pois o algoritmo não foi treinado para diferenciar
essas pessoas e apresentará, como é o caso, uma performance
inferior em relação a estas.

C. Acertos Desafiadores
 A Figura IV.1 traz a atenção, por outro lado, a resultados
difíceis que geraram acertos.

Figura IV.1 - Acertos considerados difíceis realizados pela

rede neural

TABELA I
RESULTADOS DE CADASTRAMENTO E EXECUÇÃO

Grandeza Resultado
Tempo médio de cadastramento por
identidade com 3 imagens no banco
de dados

1,150 s

Tempo médio de detecção e
vetorização por imagem

0,383 s

Tempo médio de Detecção por
imagem

0,301 s

Tempo médio de Execução do KNN
por identidade detectada

0,209 s

Tempo total para reconhecer uma
pessoa

0,592 s

Trabalho de Conclusão de Curso II – Engenharia Elétrica – CEFET-MG

9

 Especificamente, tem-se em IV.1.1 a foto de uma pessoa
utilizando óculos, chapéu e em condições de baixa iluminação.
As duas fotos seguintes (IV.1. 2 e IV.1.3) são de uma pessoa
cujo irmão gêmeo univitelino também está cadastrado na base
de dados. A foto IV.1.4 testa uma situação com baixa qualidade
da imagem de uma pessoa usando óculos, onde a rede neural foi
capaz de atravessar o score mínimo de 50%. A foto IV.1.5
mostra uma pessoa que foi cadastrada sem maquiagem, mas
está bastante diferente nesta foto devido à presença desta.
Finalmente, na sexta foto tem-se o reconhecimento de uma
pessoa maquiada em uma foto tirada em sua infância.
 Estes resultados demonstram que a rede neural é capaz de
identificar pessoas em situações em que até humanos teriam
dificuldade, e que é um resultado também obtido por [2], visto
que na LFW a arquitetura FaceNet alcançou 99,63% de acertos
enquanto o resultado mediano humano é de 97,53% de acertos
[1].

D. Erros Esperados
 A diferenciação entre gêmeos e o reconhecimento de pessoas
em fotos de baixa qualidade são desafios enfrentados por todos
os algoritmos de reconhecimento facial [25]. Neste trabalho,
obtiveram-se resultados que seguem esta tendência.
 Os resultados relacionados à baixa resolução de imagens
foram analisados de forma qualitativa e mostram que, à medida
que a resolução diminuiu, o score diminui e a quantidade de
falsos positivos e negativos aumenta. Um exemplo deste padrão
de resultados é representado pela Figura IV.2.

Figura IV.2 - Mesma imagem reconhecida com resoluções

diferentes

 Esta conclusão é válida visto que a foto da direita alcançou
um score 7,0% maior e possui mais alta resolução. Logo, quanto
melhor for a câmera utilizada para o reconhecimento, melhor
será sua performance.
 Os resultados com gêmeos, por outro lado, podem ser
encontrados na Tabela II.

TABELA II
TESTE COM IRMÃOS GÊMEOS

Grandeza Resultado
Acertos 2

Falsos Positivos 1
Unsures 5

 Fica claro que este algoritmo tende a gerar unsures para
gêmeos, o que faz sentido pois até para o olho humano é difícil
diferenciá-los.

Além disso, pode-se afirmar que qualquer base de dados que
se utilize de uma amostra da população em geral, como
distribuição, estará enviesada contra gêmeos. Isto decorre da
regularização dos algoritmos de otimização, que os impedirá de

alcançar o nível de variância necessária para diferenciar pessoas
bastante semelhantes.

Uma forma possível de resolver este problema é cadastrar na
base de dados uma flag que indique se a pessoa tem uma irmã
ou irmão gêmeo univitelino. Desta forma, quando o algoritmo
gerar um positivo ou unsure cuja distância aponta para
identidades cadastradas como gêmeos, ele poderá atravessar
estes resultados por uma nova rede neural, que seria treinada
especificamente para diferenciar gêmeos, melhorando, assim,
os resultados finais.

E. Comparação entre valores de K
Como mencionado em III.D, a escolha de K se deu como

K=2 uma vez que entre os valores possíveis esta se mostrou um
bom meio termo entre a geração de falsos positivos e o
desempenho de assertividade do reconhecimento. Os valores
possíveis para K são 1, 2 e 3, uma vez que cada identidade
possui 3 fotos cadastradas.

Foi feita então a comparação para os valores de K para a base
de dados std. A Figura IV.3 traz uma representação gráfica das
mais importantes métricas para os valores possíveis de K na
base de dados std.

Figura IV.3 - Comparação de diferentes métricas para valores

de K

Percebe-se que este resultado confirma a previsão feita
durante o processo de desenvolvimento sobre o tradeoff entre
assertividade e falsos positivos. No entanto, não se observou um
aumento significativo na quantidade de resultados incertos,
visto que Dist3 é comumente maior que 1.00, então, tende a
gerar mais negativos.

Esta escolha dependerá do que exige cada aplicação da
presente arquitetura, demonstrando a adaptabilidade deste
sistema desenvolvido para diferentes situações. Outra
possibilidade seria cadastrar mais fotos para cada usuário e,
desta forma, aumentar o valor de K sem necessariamente
diminuir a performance do sistema.

Vale destacar que foi alcançado um melhor resultado, do
ponto de vista de sistemas de segurança com foco em reduzir
falsos positivos, com um valor de K=3. Isto decorre da redução
dos falsos positivos em 76,9% em relação à arquitetura utilizada
(K=2).

Ainda assim, a escolha de K=2 se sustenta, pois, este sistema
demonstrou ser uma escolha intermediária entre a geração de
falsos positivos e o desempenho de assertividade do
reconhecimento.

87
%

13
%

0% 0%

80
,5

0%

9,
10

%

2,
60

%

7,
80

%

75
,3

0%

2,
60

%

11
,7

0%

10
,4

0%

%
C O R R E T O S

F A LS O S
P O S IT I V O S

F A LS O S
N E G A T IV O S

U N S U R E S

K=1 K=2 K=3

Trabalho de Conclusão de Curso II – Engenharia Elétrica – CEFET-MG

10

V. CONCLUSÕES
O estudo foi capaz de reproduzir resultados satisfatórios de

reconhecimento facial, alcançando 87% de acertos em uma
determinada base de dados. Desta forma, provou-se que a rede
neural convolucional FaceNet é aplicável em ambientes
acadêmicos com limitado poderio computacional.

Além disso, o conhecimento profundo da arquitetura CNN
propiciou que discussões fossem feitas acerca de possíveis
vieses de treinamento e pontos de melhoria no sistema.

O alto número de falsos positivos, no entanto, representa um
obstáculo que este algoritmo deve ultrapassar antes de ser
implementado para sistemas de segurança.

VI. AGRADECIMENTOS
Agradeço ao CEFET-MG por me proporcionar estes anos de

aprendizado. Ao professor orientador Anthony Chiaratti por
toda a paciência, apoio e insights. Ao professor co-orientador
Túlio Carvalho pela vital participação na idealização deste
projeto. À minha irmã Maria Fernanda, aos meus pais Francine
e Cassiano e aos meus avós Edna e Ronaldo por todo apoio e
compreensão que foram necessários na realização deste
trabalho.

VII. REFERÊNCIAS BIBLIOGRÁFICAS
[1] Y. Taigman, M. Yang, M. Ranzato & L. Wolf. “DeepFace: Closing the

Gap to Human-Level Performance in Face Verification”. IEEE Conf. on
CVPR, 2014.

[2] F. Schroff, D. Kalenichenko, J. Philbin, “FaceNet: A Unified Embedding
for Face Recognition and Clustering”. IEEE Conf. on CVPR, 2015.

[3] Dias, M. V., “Desenvolvimento de uma Rede Neural de Visão
Computacional conectada à Nuvem”, Trabalho de Conclusão de Curso I,
CEFET-MG, 2019.

[4] University of Massachusetts, “Labeled Faces in The Wild Results”,
[Online]. Disponível:
http://vis-www.cs.umass.edu/lfw/results.html#hdlbp, 2018

[5] Brum, A. L., & Oliveira, M. C., “Face Unlock: Uma aplicação de Visão
Computacional”. Iniciação científica, 2018, CEFET-MG.

[6] G. B. de Castro, “Solução para Contagem de Pessoas em Espaços
Públicos Usando Visão Computacional”, Trabalho de Conclusão de
Curso II, CEFET-MG, 2019.

[7] A. L. Brum, M. C. Oliveira, A. d. Almeida, “Interferência da Maquiagem
e Acessórios no Reconhecimento Facial”. Febrar, 2018.

[8] D. Chen, X. Cao, F. Wen, J. Sun, “Blessing of Dimensionality: High-
dimensional Feature and its Efficient Compression for Face
Verification”. IEEE Conf. on CVPR, 2013.

[9] R. Szeliski, “Computer Vision: Algorithms and Applications”. Springer,
Disponível: http://szeliski.org/Book/, 2010.

[10] A. Ng. “Convolutional Neural Networks”, Disponível:
https://www.coursera.org/learn/convolutional-neural-
networks/home/welcome, 2017.

[11] K. Collins-Thompson, “Applied Machine Learning in Python”. Coursera,
2017, Disponível: https://www.coursera.org/learn/python-machine-
learning/home/welcome

[12] A. Ng, “Neural Networks and Deep Learning”. Coursera, 2017,
Disponível: https://www.coursera.org/learn/neural-networks-deep-
learning/home/welcome

[13] M. Cavaioni, “DeepLearning series: Convolutional Neural Networks”.
Medium, 2018, Disponível: https://medium.com/machine-learning-
bites/deeplearning-series-convolutional-neural-networks-a9c2f2ee1524

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Aguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich, “Going Deeper With Convolutions”. IEEE
Conf. on CVPR, 2015.

[15] C. Szegedy, S. Joffe, V. Vanhoucke, A. Alemi, “Inception v-4, Inception-
ResNet and the Impact of Residual Connections on Learning”.
arXiv:1602.07261v2, 2016.

[16] A. Ng, “Improving Deep Neural Networks: Hyperparameter tuning,
Regularization and Optimization”. Coursera, 2017. Disponível:
https://www.coursera.org/learn/deep-neural-network/home/welcome

[17] H. Taniai, “Facenet implementation by Keras2”, 2018, Repositório
GitHub, https://github.com/nyoki-mtl/keras-facenet.

[18] N. Bourbaki, "Chapters 1–5". Topological vector spaces. Springer, 1987.
[19] D. Sandberg, “Face Recognition using TensorFlow”, 2018, Repositório

GitHub, https://github.com/davidsandberg/facenet
[20] I. de P. Centeno, “MTCNN face detection implementation for TensorFlow,

as a PIP package”, 2018, Repositório GitHub,
https://github.com/ipazc/mtcnn.

[21] K. Zhang, Z. Zhang, Z. Li, Y. Qiao, “Joint Face Detection and Alignment
using Multi-Task Cascaded Convolutional Networks”, IEEE Signal
Processing Letters, Vol.: 23 , no.: 10, Out. 2016.

[22] M. V. Dias, “Repository for Face Recognition Thesis”, 2020, Repositório
GitHub, https://github.com/Mattveloso/DeepFaceRecThesis

[23] J. Browniee, “How to develop a Face Recognition System Using FaceNet
in Keras”. 2019, Disponível: https://machinelearningmastery.com/how-
to-develop-a-face-recognition-system-using-facenet-in-keras-and-an-
svm-classifier/

[24] J. Le, “Use Python and Open CV to recognize multi face and show the
name”, 2017, Repositório GitHub,
https://github.com/trieutuanvnu/Raspberry-Face-Recognition

[25] A. Afaneh, F. Noroozi, Ö. Toygar, “Recognition of identical twins using
fusion of various facial feature extrators”. EURASIP Journal on Image
and Video processing, 2017.

	I. Introdução
	II. Revisão Bibliográfica
	A. Visão Computacional e o Reconhecimento facial
	A.1) Falsos Positivos e Falsos Negativos

	B. Treinamento de Redes Neurais
	C. Redes Neurais Convolucionais
	D. Arquitetura Inception-Residual
	E. Algoritmo de otimização: Batch Normalization e Dropout
	F. Distância L2 (Norma Euclidiana)
	G. Detecção via redes neurais

	III. Metodologia
	A. A Rede Neural
	B. CNN de Vetorização para reconhecimento: FaceNet Inception-Residual
	B.1) Arquitetura FaceNet
	B.2) Treinamento da arquitetura FaceNet
	B.3) Detalhamento da arquitetura NN3 modificada

	C. Arquitetura MTCNN de detecção
	D. Algoritmo de reconhecimento: Análise algébrica dos vetores em pós processamento
	E. Python, Keras e GitHub

	IV. Resultados e Discussões
	A. Tempo de cadastramento e execução
	B. Problema com Identificação de Asiáticos e Crianças
	C. Acertos Desafiadores
	D. Erros Esperados
	E. Comparação entre valores de K

	V. Conclusões
	VI. Agradecimentos
	VII. Referências bibliográficas

