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Resumo —Algoritmos de Inteligência Artificial (IA) baseados 
em Deep Learning representam um tópico de grande complexidade 
cuja compreensão é de suma importância para a ciência e 
tecnologia do futuro próximo. No presente trabalho foi 
desenvolvida uma rede neural convolutiva (CNN) capaz de 
reconhecer faces humanas. Cada rosto em uma foto é detectado e 
extraído por um algoritmo MTCNN (Multi-Task Cascaded 
Convolutional Neural Network). Cada face detectada atravessa a 
CNN FaceNet Inception-Residual que gera um vetor de 128 valores 
de saída, utilizado para reconhecer as identidades presentes na 
imagem. Isto é possível pois a IA foi treinada para fazer com que 
vetores de imagens de diferentes pessoas possuam uma Norma 
Euclidiana maior do que os vetores de fotos de uma mesma pessoa. 
Observou-se que a metodologia aplicada foi capaz de alcançar até 
87% de assertividade no reconhecimento. 
 

Palavras-Chave — Deep Learning, Inteligência Artificial, 
Reconhecimento Facial, Visão Computacional 

I. INTRODUÇÃO 
NN, do inglês Convolutional Neural Network, é uma rede    
 neural que é estruturada realizando conexões entre suas 

camadas através de um filtro e uma operação de convolução. 
Tais arquiteturas representam as mais avançadas Inteligências 
Artificiais de Visão Computacional (VC) [1, 2, 3, 4]. Uma 
aplicação da VC é o reconhecimento facial, cuja acurácia é 
responsável pela segurança de sistemas vitais como destravar 
telefones celulares e realizar pagamentos. 

Apesar de recentes avanços na pesquisa em Visão 
Computacional no CEFET-MG [5, 6, 7], pouco esforço está 
sendo direcionado para a compreensão profunda e melhoria do 
funcionamento de arquiteturas de reconhecimento baseadas em 
Deep Learning (DL)[3]. 

É evidente a tendência de se aplicar tecnologias baseadas em 
Machine Learning e Deep Learning em metodologia de caixa 
preta [5, 6]. Assim abre-se espaço para a realização de novas 
pesquisas no nível superior que tenham como foco o 
aprofundamento da compreensão do funcionamento destes 
algoritmos.  

Especificamente sobre o trabalho desenvolvido em [5], a 
inteligência aplicada para realização do reconhecimento foi 
LPBH (Local Binary Pattern Histograms) e, para detecção, 
utilizou-se Haar Cascade. De acordo com estudos relevantes em 
Visão Computacional estas não representam o estado da arte 
destas tecnologias [1, 2, 3, 4].  

Tal fato é verificado ao se comparar os melhores resultados 
obtidos por uma tecnologia de reconhecimento à base de LBP 

(Local Binary Pattern) [8] àqueles obtidos por inteligências 
baseadas em CNN’s [1, 2, 4], na base de dados LFW (Labeled 
Faces in the Wild) [4], que é tida como parâmetro por notórios 
membros da comunidade científica de visão computacional [1, 
8]. Enquanto a metodologia LBP de Chen et al. [8] alcançou 
uma acurácia de 95,17%, Taigman et al. [1] alcançou 97,35% e 
Schroff et al. [2] alcançou 99,63%, ambos aplicando CNN’s. 

Tendo em vista estes fatos é proposto no presente trabalho 
que se utilize da exploração a fundo do funcionamento de 
CNN’s realizada na primeira parte do trabalho de conclusão de 
curso [3] para desenvolver uma inteligência artificial baseada 
nesta tecnologia. Otimizando-se, assim, a performance de 
reconhecimento de [5] através da técnica que representa o 
estado da arte do reconhecimento facial e da visão 
computacional.  

De antemão, para facilitar a aplicabilidade comercial do 
sistema, definiu-se que apenas 3 fotos de treinamento seriam 
utilizadas para cada pessoa. O número de fotos foi definido 
através de brainstorming em busca de um valor que seria 
considerado razoável para a maioria das pessoas, do ponto de 
vista de experiência do usuário.  

Além disso, determinou-se que o tempo de cadastramento 
deveria ser o mínimo possível. Estes parâmetros foram 
definidos tendo em mente um sistema de segurança comum que 
possa se basear em CNN’s, visto que se a aplicação for 
confiável o suficiente para sistemas de segurança, também será 
aplicável a outros sistemas que possuam exigências menos 
rígidas. Vale ressaltar que sistemas de segurança comumente 
utilizam diferentes métodos com resultados não 
correlacionadas para confirmar uma identidade, podendo ser 
este trabalho, um destes. 

Os resultados desejados foram obtidos com sucesso, tendo 
este trabalho diminuído em 97% a quantidade de dados 
necessários para cadastrar cada pessoa, em comparação com 
[5]. Foi alcançado também um baixo tempo de treinamento por 
identidade de 1,150 s e uma assertividade no reconhecimento 
de 87% em determinadas condições. 
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II. REVISÃO BIBLIOGRÁFICA 

A. Visão Computacional e o Reconhecimento facial 
Visão Computacional é a área de pesquisa que permite que 

computadores exerçam funções primárias que são realizadas 
pelos olhos humanos. A detecção de objetos e o 
reconhecimento facial, por exemplo, são subáreas da VC [9]. 

Reconhecimento facial é responsável por dizer a qual 
identidade pertence certa imagem. Tal procedimento é feito 
comparando-se a imagem em questão a um dado banco de 
dados de pessoas anteriormente cadastradas [10]. 

É importante diferenciar reconhecimento facial de 
verificação facial. Verificação é um procedimento mais simples 
que define se duas imagens pertencem à mesma identidade ou 
não. A verificação pode também ser utilizada como parte do 
algoritmo de reconhecimento através de uma comparação com 
todas as imagens do banco de dados. 

 
    A.1) Falsos Positivos e Falsos Negativos 

O maior problema que um sistema de controle de acesso pode 
gerar é conceder acesso a uma pessoa não autorizada pois este 
acredita que a pessoa em análise da VC seja alguém que está 
cadastrado em seu banco de dados. Denomina-se tal problema 
de Falso Positivo. Um sistema de reconhecimento facial é 
propício a gerar falsos positivos se não conseguir discernir entre 
duas pessoas com alto grau de certeza. 

Falsos negativos são problemas muito menos graves, uma 
vez que se tratam de negar acesso a uma pessoa autorizada. É 
bastante provável que tal pessoa consiga tentar novamente e ser 
reconhecida pelo sistema com sucesso, sendo perda de tempo o 
prejuízo máximo causado. Apesar de existirem exceções a esta 
regra, este trabalho priorizará a redução de falsos positivos 
mesmo que isto ocasione em um aumento de falsos negativos. 

B. Treinamento de Redes Neurais 
Redes neurais são um algoritmo de Machine Learning que 

possuem camadas ocultas interconectadas algebricamente, 
além das camadas de entrada e saída [11]. Uma rede neural com 
diversas camadas ocultas é denominada de Deep Learning. 

As camadas ocultas possuem operadores que recebem as 
saídas (ativações) das camadas anteriores, multiplicam-nas por 
uma matriz de pesos, somam ao resultado um valor de viés, e 
então, obtém um resultado final, aplicando uma função não 
linear (função de ativação, normalmente ReLU, Tangente 
hiperbólica ou Sigmoid [12]). A equação (1) demonstra, 
algebricamente a ativação (resultado) de uma camada oculta a 
partir de suas entradas e parâmetros. 

𝐴𝐴𝑛𝑛 = 𝑓𝑓(𝑊𝑊𝑛𝑛 ∗ 𝐴𝐴𝑛𝑛−1 + 𝐵𝐵𝑛𝑛) 
(1) 

 Onde 𝐴𝐴𝑛𝑛 é a matriz de ativações da camada atual (n), 𝑊𝑊𝑛𝑛 a 
matriz pesos desta camada, 𝐴𝐴𝑛𝑛−1 a matriz de ativações da 
camada anterior, 𝐵𝐵𝑛𝑛 a matriz de vieses da camada atual e 𝑓𝑓() a 
função de ativação. Se a matriz pesos representar a conexão de 
todas as ativações da camada anterior a todas as ativações da 
camada seguinte, tem-se uma camada denominada de 
completamente conectada, que é o tipo de camada clássico de 
redes neurais. 

É necessário que uma rede neural receba treinamento prévio 
para que possa aprender a executar uma atividade específica 
[12]. Este treinamento pode ser organizado de duas formas: na 

primeira, engenheiros de software definem quais características 
a rede neural deve procurar em uma determinada entrada e, a 
partir destas, aprender a solucionar o problema em questão. Um 
exemplo seria medir a distância entre os olhos e cor da pele para 
ser capaz de reconhecer a qual pessoa pertence determinada 
foto. Estas e outras características quantitativamente 
compreensíveis ao raciocínio humano são consideradas 
“definidas manualmente” (hand-crafted) e foram a base dos 
algoritmos de machine learning até a chegada da Big Data. 

O segundo método de treinar uma rede neural é não limitar 
seu funcionamento a características definidas manualmente e 
permitir que esta aprenda como resolver o problema em questão 
somente a partir dos dados que utiliza. Este tipo de tática 
funciona melhor que o anterior num cenário onde há 
abundância de dados de treinamento [1, 10], explicitando a 
importância da Big Data. 

Os dados de treinamento para algoritmos de classificação são 
uma base de dados com entradas e saídas corretamente 
rotuladas [10]. No caso do presente trabalho, por exemplo, a 
entrada da rede neural são as informações em RGB dos pixels 
de uma imagem e a saída é a identidade da pessoa à qual 
pertence a imagem.  

Previamente a qualquer aprendizado, a rede neural fará 
previsões completamente aleatórias para diferentes entradas. 
Entretanto, definindo-se uma função perda (Loss) para todos os 
resultados da base de dados, é possível calcular a derivada 
parcial de cada variável (pesos e vieses) na rede neural em 
relação a esta. Tal cálculo de derivadas é denominado de Back-
Propagation.  

Tais derivadas formam um gradiente multidimensional que 
aponta para o valor mínimo de perda. A cada iteração de 
treinamento a rede neural aprende a se aproximar deste valor 
mínimo global de perda, que representa o valor que pode ser 
alcançado que apresente a maior quantidade de acertos na base 
de dados de treino [12]. 

Uma rede neural possui também parâmetros não-treináveis 
que necessitam ser escolhidos previamente. Tais parâmetros 
são denominados de hiperparâmetros [12]. 

C. Redes Neurais Convolucionais 
Uma CNN é um tipo específico de rede neural que possui 

camadas do tipo convolucionais e pooling no lugar de camadas 
completamente conectadas [3]. Os pesos 𝑊𝑊𝑛𝑛 destas camadas, 
que vão a treinamento, são os valores dentro dos filtros de cada 
camada. A Figura II.1 traz um exemplo da camada 
convolucional destacando o procedimento de convolução.  

Vale ressaltar os hiperparâmetros que devem ser escolhidos 
para estas camadas. Estes são as dimensões e quantidades dos 
filtros (f), o stride (s) e o padding (p).  

Um valor 6*(f=2) indica que serão aplicados 6 filtros de 
dimensões 2x2. Já um valor s=2 indica que o passo dado pelo 
filtro nas dimensões de 𝐴𝐴𝑛𝑛−1 será de dois em dois pixels, como 
na Figura II.2. A Figura II.1 é um exemplo de s=1. O padding, 
por sua vez, indica quantos pixeis de valor 0 serão adicionados 
a cada volume antes da convolução. Ele pode ser “válido” ou 
“semelhante”, p=0 (válido) é representado pelas figuras II.2. e   
II.1, onde não há padding e o volume diminui suas dimensões 
após a convolução. Já o padding “semelhante” (same) adiciona 
linhas e colunas até fazer com que a convolução gere um 
volume de dimensões semelhantes ao da camada anterior. 
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Figura II.1 – Camada Convolucional, com filtro 3x3, padding 

válido e stride 1, adaptada de [13]  

As camadas de pooling diferenciam-se das convolucionais 
pois seu filtro procura qual o valor máximo ou médio dentro de 
sua área de aplicação (max pooling ou average pooling, 
respectivamente). Um exemplo pode ser visto na Figura II.2. 

 
Figura II.2 – Camada Max-pooling com filtro 2x2 e stride 2 

obtida de [13] 

Um exemplo de rede neural convolucional pode ser 
encontrado na Figura II.3. CNN’s tem, em seu final, a 
vetorização das ativações de camadas convolucionais na forma 
de camadas completamente conectadas que reduzem a 
quantidade de valores nos vetores e uma unidade de softmax 
que calcula a probabilidade de cada candidato à classificação 
[1]. 

D.  Arquitetura Inception-Residual 
Um tipo de camada especial criado por Szegedy et al. [14] é 

a camada do tipo Inception. Tal camada aplica, nas ativações 
das camadas anteriores, filtros de diferentes dimensões e 
pooling em paralelo. 

Além disso, Szegedy et al. [15] propõe também que se 
coloque uma conexão identitária (residual) a cada duas 
camadas. Desta forma permite-se que esta tenha ativações 
idênticas àquelas presentes duas camadas atrás. Tal fator é 
importante, pois o procedimento de descida do gradiente tem 
dificuldade em aprender a função identidade em determinada 
camada [10]. Tal função é útil algebricamente pois garante que 
nenhuma camada adicionada à rede reduzirá a sua performance, 

uma vez que ela pode ser simplesmente ignorada. Um exemplo 
desta arquitetura residual está na Figura II.4. 

 
Figura II.4 – Bloco Inception-Residual 35 

O algoritmo desenvolvido por [15] propõe uma arquitetura 
denominada “inception-ResNet-v1” que combina as 
características de inception e de redes residuais através de dois 
tipos de blocos de camadas. Estes são divididos em blocos 
inception-residuais, e blocos de redução. Neste artigo foram 
inclusos um exemplo de cada (Figura II.4 e Figura II.5), apesar 
de que no trabalho foram implementados todos os 6 blocos 
propostos por [15] necessários para criar a “inception-ResNet-
v1”. 

  
Figura II.5 – Bloco Reduction-A 

A função dos blocos inception-residuais é aprofundar a rede 
neural, permitindo que esta aprenda características mais 
avançadas e com melhores capabilidades de reconhecimento. A 
função dos blocos de redução é reduzir a largura e altura dos 
volumes convolucionais, diminuindo a quantidade de dados.  

 
Figura II.3 - Exemplo de CNN adaptado de [13]  
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Nota-se nas figuras II.4 e II.5 que ambos são blocos de 
inception, mas apenas o bloco 35 é residual, devido à sua 
conexão direta entre as ativações.  No bloco Reduction-A é 
apresentado um filtro de concatenação, que tem a função de unir 
as saídas das diferentes camadas num formato compreensível 
para as camadas seguintes. 

E. Algoritmo de otimização: Batch Normalization e Dropout 
Um problema do treinamento da rede neural é garantir que 

ela não gerará resultados que satisfaçam apenas a base de dados 
de treinamento (overfitting), mas também generalizem para 
outras bases de dados [16]. Tal problema é medido através da 
variância dos resultados.  

Traz-se a atenção também ao viés dos resultados, que está 
inversamente relacionado à capacidade da rede neural de ser 
assertiva para com os seus dados de treinamento. O objetivo de 
um algoritmo de otimização é conduzir o treinamento para um 
caminho que resulte em baixa variância e baixo viés [16]. 

Para este fim, tem-se o algoritmo de otimização, que aplica 
batch normalization e dropout [16] para realizar o treinamento 
mais rápido e assertivo possível [17].  

F. Distância L2 (Norma Euclidiana) 
Uma forma de se calcular a distância entre dois vetores P e 

Q é calcular a Norma Euclidiana ou distância L2 entre eles. A 
fórmula de cálculo é representada pela equação (2). 

��(𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

(2) 
 Onde 𝑝𝑝𝑖𝑖  representa cada valor individual do vetor P, 𝑞𝑞𝑖𝑖 
representa cada valor do vetor Q e n é a quantidade de valores 
em ambos vetores [18].  

G. Detecção via redes neurais 
Outra função fundamental da Visão Computacional é 

detectar um determinado objeto de interesse em uma imagem 
[9]. O exemplo a ser aplicado no presente trabalho é o de 
encontrar rostos em uma determinada foto.  

Uma rede neural poderia ser treinada para realizar a detecção 
e reconhecimento ao mesmo tempo. Entretanto, algoritmos em 
Deep Learning necessitam de grandes quantidades de dados 
para ser assertivos. Considerando que há uma quantidade muito 

maior de dados disponíveis para treinamento de uma rede de 
detecção em separado de uma rede de reconhecimento, faz 
sentido que se separe a execução destas tarefas em duas etapas 
distintas em um determinado algoritmo [10]. 

III. METODOLOGIA 
No presente trabalho construiu-se a aplicação real de uma 

rede neural para reconhecimento facial, ou seja, não foram 
utilizados métodos que aumentam a performance do algoritmo 
que não seriam aplicados em situações reais. A arquitetura geral 
desenvolvida é resumida pela Figura III.1.  

Tais métodos são utilizados em praticamente todos os artigos 
que alcançam o estado da arte da tecnologia [10], entretanto, em 
aplicações práticas eles geram muito gasto computacional 
desnecessário, com pouco ganho em performance. Um exemplo 
é a aplicação de diversos treinamentos de uma mesma rede 
neural a uma entrada, para obter diferentes resultados e calcular 
a média entre estes.  

Desta forma, espera-se que os resultados a serem obtidos 
através deste método sejam reproduzidos diretamente em 
aplicação prática. 

A. A Rede Neural 
O método escolhido para realizar o reconhecimento foi 

aplicar uma CNN profunda. Tal escolha se justifica uma vez 
que esta tecnologia tem sido capaz de alcançar e expandir, 
seguidas vezes, o estado da arte do reconhecimento facial [1, 2, 
4]. 

B. CNN de Vetorização para reconhecimento: FaceNet 
Inception-Residual 

Foi definido que a metodologia a ser aplicada seria 
semelhante à FaceNet [2], que é uma arquitetura CNN do tipo 
inception. Além disso, a partir dos avanços obtidos por [15] 
para facilitar o treinamento com menor poder computacional, 
definiu-se que a rede seria também residual. 

A justificativa da utilização de camadas inception é que, dado 
um grande poderio computacional para treinamento da rede 
neural, esta técnica permite que o algoritmo de otimização 
encontre que tipo de camada ele deseja ter em cada etapa, 
evitando a interferência humana na escolha deste. A presença 
de conexões residuais, adicionalmente, reduz o custo 
computacional do treinamento de redes profundas, sem que haja 
perda de desempenho [10]. 

 
Figura III.1 - Representação visual do algoritmo de detecção e reconhecimento facial 
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Já o algoritmo de otimização utilizado é uma descida do 
gradiente aplicada em batch-normalization com dropout de 
probabilidade de manutenção das ativações igual a 80%. Esta 
metodologia permite a maximização da performance de uma 
rede neural, sendo também altamente eficiente em evitar o 
fenômeno de overfitting [15]. Garante-se, assim, que a rede 
neural seja capaz de ter um baixo viés e baixa variância [16]. 

 
    B.1) Arquitetura FaceNet 

A versão da arquitetura FaceNet aplicada foi desenvolvida 
em Keras [17] com inspiração na versão em TensorFlow 
disponibilizada por Sandberg [19]. Sandberg realizou o 
treinamento da rede FaceNet em três milhões de imagens e 
disponibilizou seus dados de treinamento em licença Open-
Source, possibilitando importá-los a este projeto e aplicar uma 
rede neural altamente robusta, sem ser necessário treiná-la 
novamente. 

Com isso os dados de treinamento foram importados em 
forma de pesos das conexões neurais. Na verdade, obter uma 
base de dados nova de treinamento deste tamanho seria um 
grande desafio e diversos dias ou meses seriam necessários para 
retreinar a rede neural com o poderio computacional à 
disposição da realização desta pesquisa. 

Um ponto importante a ser destacado é que a metodologia de 
vetorização para reconhecimento utilizada neste trabalho pode 
ser denominada de caixa-cinza, visto que a rede neural FaceNet 
Inception-Residual construída por [17] é aplicada de forma 
inalterada, apesar de que foi realizada extensa exploração sobre 
como ela está funcionando internamente. Seria possível alterar 
a sua arquitetura interna, via código, porém uma mudança 
poderia gerar custos computacionais de treinamento 
demasiadamente altos, fugindo ao escopo deste trabalho. 

Tem-se então que a arquitetura FaceNet é um tipo de CNN 
sem camada softmax no final, cuja saída gera vetores de 128 
valores que representam cada face analisada. Estes vetores são 
compostos pelas características mais importantes de cada rosto 
para fins de reconhecimento facial, definidas via treinamento. 

Estas características são distintas das características criadas 
manualmente e é virtualmente impossível compreender o que 
elas de fato representam, pois são resultados de milhões de 
conexões em diferentes camadas de diversos tipos na rede 
neural. 

Esta é justamente a vantagem de se utilizar uma rede neural 
em relação aos demais métodos de machine learning, visto que 
a rede neural não está limitada pela escolha manual de 
características feita por humanos, como mencionado na seção 
II.B.  

Enfim, a opção por esta arquitetura se justifica também 
porque ela foi capaz de superar os resultados do estado da arte 
anteriores testados na base de dados LFW em 30% [2]. A 
aplicação mais complexa da arquitetura FaceNet (NN2) atingiu 
99,63% de acerto, ultrapassando os resultados de [1], que havia 
atingido 97,35%.  

Na verdade, a arquitetura NN2 se mantém há 5 anos como o 
estado da arte da tecnologia de verificação facial de acordo com 
as métricas de comparação do banco de dados LFW [4], quando 
comparados apenas artigos publicados e revisados por pares 
(peer reviewed).  

    B.2) Treinamento da arquitetura FaceNet 
Para que a CNN seja capaz de transformar uma imagem RGB 

em uma representação de 128 características (denominada 
embedding), é necessário que tal instrução esteja explícita como 
um objetivo durante o treinamento. 

Com este fim, o treinamento foi feito a partir da busca do 
mínimo de uma função perda denominada de perda tríplice 
(Triplet Loss) via descida de gradiente. Tal função calcula a 
distância algébrica L2 se utilizando de três imagens: uma 
denominada “Âncora” ou de determinada identidade, outra 
denominada “Negativa” que se sabe ser de outra identidade e 
uma denominada “Positiva” que se sabe ser da mesma 
identidade da âncora em questão [2]. 

O objetivo do treinamento é aproximar ao máximo a 
distância L2 entre os embeddings de mesma identidade e 
expandir tal distância entre aqueles de identidades diferentes. 
Algebricamente tem-se tal fato exposto na inequação (3). 

 
‖𝑓𝑓(𝑥𝑥𝑎𝑎) − 𝑓𝑓(𝑥𝑥𝑝𝑝)‖22 +  𝛼𝛼 < ‖𝑓𝑓(𝑥𝑥𝑎𝑎) − 𝑓𝑓(𝑥𝑥𝑛𝑛)‖22   

(3) 
Na inequação (3) tem-se a fórmula para que seja calculada a 

perda tríplice para um conjunto de 3 imagens. 𝑓𝑓(𝑥𝑥) representa 
uma embedding resultante da aplicação da rede neural em 
entrada matricial 𝑥𝑥. 

As entradas 𝑥𝑥𝑎𝑎, 𝑥𝑥𝑝𝑝 e 𝑥𝑥𝑛𝑛 representam as imagens âncora (a), 
positiva (p) e negativa (n). O operador ‖ ‖22 representa a 
norma euclidiana elevada ao quadrado. O termo 𝛼𝛼 é um 
hiperparâmetro adicionado a esta equação para garantir que 
haja uma distância mínima entre os termos de ambos os lados 
da inequação.  

Então aplica-se a inequação (3) para todos os N trios 𝑥𝑥𝑎𝑎, 𝑥𝑥𝑝𝑝 
e 𝑥𝑥𝑛𝑛 de uma determinada base de dados, obtendo-se, assim, a 
função perda a ser minimizada (4). 

𝐿𝐿 =  ���𝑓𝑓(𝑥𝑥𝑖𝑖𝑎𝑎) − 𝑓𝑓�𝑥𝑥𝑖𝑖
𝑝𝑝��

2
2 − ‖𝑓𝑓(𝑥𝑥𝑖𝑖𝑎𝑎) − 𝑓𝑓(𝑥𝑥𝑖𝑖𝑛𝑛)‖22 + 𝛼𝛼�

+

𝑁𝑁

𝑖𝑖

 

(4) 
Para que haja convergência na descida do gradiente a partir 

da equação (4), é necessário que os trios escolhidos representem 
casos difíceis, ou seja, imagens de pessoas que naturalmente se 
pareçam e gerem distâncias menores entre a imagem âncora e a 
negativa [2]. Finalmente, tem-se a otimização realizada a partir 
da descida do gradiente calculada através de back-propagation 
da função acima. 

 
    B.3) Detalhamento da arquitetura NN3 modificada 
A arquitetura aplicada da FaceNet escolhida foi a NN3, que 

aceita como entrada imagens recortadas de cada face de 
tamanho 160x160x3. Esta foi escolhida em detrimento da NN2, 
uma vez que ela representa uma versão com uma acurácia 
próxima àquela da rede neural NN2, mas possui como 
vantagem uma quantidade exponencialmente menor de 
parâmetros, acelerando a execução do código [2, 19]. 

Todas as camadas da NN3 são colocadas em sequência e 
convergem para uma camada totalmente conectada que gera o 
vetor de 128 características para cada imagem. A Figura III.2 
resume a arquitetura aplicada. 
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Figura III.2 – Arquitetura FaceNet NN3 Inception-residual 

completa e resumida. 

Como mencionado em II.D, a arquitetura é construída a partir 
da aplicação conjunta de blocos Inception Residuais definida 
por [15]. Foi necessário o desenvolvimento de camadas de 
“Ajuste” e de “Classificação” (vide Figura III.3 e Figura III.4). 
Estas etapas fazem o ajuste inicial da imagem na entrada para o 
formato 17x17x256 antes do primeiro bloco 35 e recebem a 
saída em formato 3x3x1792 do último bloco 8 e a transformam 
no vetor desejado (vide Figura III.2). 

 
Figura III.3 – Detalhamento das Camadas de Ajuste, em 

sequência de cima para baixo 

 
Figura III.4 – Detalhamento das Camadas de Classificação 

 Esta etapa então é representada na Figura III.1 como a etapa 
intermediária “FaceNet NN3” e representa a vetorização das 
imagens em embeddings 128-dimensionais. 

C. Arquitetura MTCNN de detecção 
É necessário que a entrada da FaceNet NN3 receba imagens 

RGB de 160x160 pixeis, desta forma utilizou-se de uma outra 
rede neural denominada de MTCNN para realizar a detecção de 
imagens em fotos da base de dados, extrair a face e 
redimensioná-la para um tamanho 160x160x3. 

Tal rede neural foi desenvolvida por [20] através dos 
métodos propostos por Zhang et al. [21] que se utiliza de uma 
CNN em cascata treinada para encontrar 5 pontos na face de 
uma pessoa em uma foto, e então, encontrar um retângulo na 
imagem que contenha a face detectada (Figura III.5). Enfim, tal 
face é extraída e prossegue para a CNN de reconhecimento. 

 
Figura III.5 - Pontos localizados (olhos, nariz e cantos da 

boca) e retângulo do rosto escolhidos pelo algoritmo. Fonte: 
Zheng et al [21]  

Foi utilizada uma aplicação do algoritmo de [19] adaptada 
para funcionar em Keras por [17]. Diferentemente da 
arquitetura CNN de reconhecimento, esta arquitetura MTCNN 
de detecção e alinhamento não é o foco deste trabalho, por isso 
foi aplicada com uma metodologia de caixa-preta com 
resultados analisados empiricamente. 

D.  Algoritmo de reconhecimento: Análise algébrica dos 
vetores em pós processamento 

Após uma imagem atravessar as etapas de detecção 
(MTCNN) e vetorização (FaceNet), tem-se em mãos um vetor 
de 128-bytes para cada face detectada. 

O espaço vetorial em que estes vetores existem é 128-
dimensional. Utilizando-se de uma base de dados pré-
cadastrada é possível mapear este espaço multidimensional com 
diferentes identidades. Devido à maneira como a CNN foi 
treinada, identidades parecidas estarão próximas umas das 
outras e identidades distintas estarão distantes. 

Classificação
Saída: 128 (embedding)

5x Bloco 8
Saída: 3x3x1792

Reduction-B
Saída: 3x3x1792

10x Bloco 17
Saída: 8x8x896

Reduction-A
Saída: 8x8x896

5x Bloco 35
Saída: 17x17x256

Camadas de Ajuste
Saída: 17x17x256

Detecção MTCNN
Saída: 160x160x3

• 160x160x3

Imagem RGB detectada 
(Volume de Entrada)

• 32x Filtro: 3x3| padding válido | stride = 2
• Saída: 79x79x32

Convolucional 1a

• 32x Filtro: 3x3| padding válido | stride = 1
• Saída: 77x77x32

Convolucional 2a

• 64x Filtro: 3x3| padding semelhante| stride = 1
• Saída: 77x77x64

Convolucional 2b 

• Filtro: 3x3| padding válido | stride = 2
• Saída: 38x38x64

Max Pooling 3a

• 80x Filtro: 1x1| padding válido | stride = 1
• Saída: 38x38x80

Convolucional 3b

• 192x Filtro: 3x3| padding válido | stride = 1
• Saída: 36x36x192

Convolucional 4a

• 256x Filtro: 3x3| padding válido | stride = 2
• Saída: 17x17x256

Convolucional 4b

• Saída: 17x17x256
Volume de Saída Ajustado

•Entrada: 3x3x1792 -> Saída: 1792

Global Average Pooling

•Entrada: 1792 -> Saída 1792
•Probabilidade de Dropout = 80%

Dropout

•Entrada: 1792 -> Saída: 128 (Embedding)

Completamente Conectada
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Para cada 3 fotos cadastradas na base de dados como vetores 
de cada pessoa, formam-se pequenos clusters de identidades 
diferentes no espaço 128-dimensional. 

Para realizar o reconhecimento de uma face nova cuja 
identidade é desconhecida (IDesc) foi desenvolvida uma versão 
modificada do método de K-Nearest Neighbours (KNN) com o 
valor de K igual a 2.  

O motivo pelo qual se optou por um valor de K igual a 2 e 
não igual a 1 é o fato de que desejou-se priorizar um software 
que gerasse a menor quantidade possível de falsos-positivos, 
tendo em mente um possível sistema de segurança para 
aplicação deste algoritmo.  

Tal método foi aplicado encontrando-se os dois vetores na 
base de dados com menor distância euclidiana até a embedding 
𝑓𝑓(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼). Analisam-se então as duas distâncias encontradas, se 
ambas forem menores do que um valor limite definido em 
código, considera-se que o valor é próximo o suficiente para 
acusar detecção de uma pessoa conhecida pelo sistema. Uma 
checagem extra é feita para garantir que os dois vetores 
encontrados próximos de IDesc são pertencentes à mesma 
identidade. Satisfeitas as condições a foto IDesc é então 
reconhecida como sendo pertencente àquela identidade, como 
na Figura III.6. 

O valor limite igual a 1.00 foi escolhido empiricamente com 
o mesmo fim de reduzir falsos positivos, caso determinada 
aplicação deseje gerar menos falsos negativos, mesmo que gere 
mais falsos positivos, é possível também diminuir este valor. 
Um valor de K=3 também não é desejável, pois 3 é o número 
de fotos cadastradas de uma pessoa no sistema. Se alguma foto 
cadastrada for bastante diferente do que a pessoa é hoje, a 
distância entre esta foto e a imagem em avaliação será maior 
que as restantes, diminuindo a efetividade de reconhecimento 
do sistema. 

 
Figura III.6- Exemplo de IDesc para reconhecimento 

Na Figura III.6, o algoritmo retornou “Reconhecido” e em 
seguida as distâncias entre os dois vetores mais próximos 
(Figura III.7). Na sequência ele comparou se a identidade 
prevista é a correta, registrando “True”, ou seja, correto. Além 
disso foi calculado um score de certeza de 56.6%.   

Este score foi criado para facilitar a compreensão para o 
usuário final. Tal score funciona da forma apresentada na 
equação (5). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1

2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2
∗ 100% 

(5) 
Onde Dist2 é a distância de f(IDesc) para o segundo 

embedding mais próximo. Para valores de Dist2 menores ou 
iguais a 1 (o valor limite definido), o Score será maior ou igual 
a 50% e então o algoritmo acusará o reconhecimento. Caso 

contrário, se Dist2 for maior que 1, o Score será menor que 
50%, fazendo o algoritmo, então, acusar que não houve o 
reconhecimento com sucesso.  

Acessando a base de dados para compreender com quais 
imagens o algoritmo tomou a decisão de reconhecimento da 
Figura III.6, tem-se a Figura III.7. 

 
Figura III.7 – Duas imagens do banco de dados cujos vetores 

geraram distâncias L2 de 0.7428 e 0.8203 em relação a 
f(IDesc).  

 De todas as 156 imagens de um banco de dados de 52 
identidades, estas foram as imagens mais próximas 
encontradas. Como elas pertencem a uma mesma identidade, o 
algoritmo acusa o reconhecimento. 
 No último caso em que ambas as distâncias sejam menores 
que o valor limite, mas não pertencem à mesma identidade no 
banco de dados, o algoritmo acusará que não tem certeza quanto 
àquela identidade, evitando assim um falso-positivo e 
possivelmente gerando um falso-negativo. Nesse caso será 
gerada uma saída “incerta” (unsure). 

E. Python, Keras e GitHub 
 Para realizar a programação, foi criado um repositório do 
GitHub TM [22]. Os códigos foram escritos em Python com 
base em Keras, TensorFlow-CPU e Numpy. A inspiração para 
as aplicações em Keras e TensorFlow das redes neurais foram 
obtidas de [17, 19, 23]. 

IV. RESULTADOS E DISCUSSÕES 
Analisou-se a performance da inteligência desenvolvida a 

partir de testes feitos em 2 bases de dados diferentes: uma 
“natural” (nat), com fotos para reconhecimento em diversas 
condições de iluminação de 52 pessoas diferentes, e uma base 
de dados “padrão” (std), que se utilizou apenas de fotos claras, 
retas e sem acessórios no rosto como óculos escuros e boinas 
destas mesmas pessoas. 

Destaca-se que tanto nat quanto std foram reconhecidas com 
base na mesma base de dados cadastrada (cad) de 3 fotos de 
cada pessoa, com um total de 156 fotos cadastradas, de 52 
pessoas. 

Justifica-se que ambos contextos fossem utilizados para que 
se obtivessem resultados, uma vez que em um reconhecimento 
menos rigoroso, por exemplo em redes sociais, deve-se 
encontrar mais dados próximos à primeira base. Já num sistema 
de segurança, espera-se que os dados a serem analisados sejam 
padronizados, permitindo que se avalie o desempenho deste 
algoritmo em diferentes aplicações. 

Na primeira base de dados (nat) os resultados obtidos foram: 
• 15,7% de resultados incorretos, sendo 5,7% falsos 

positivos e 10,0% falsos negativos; 
• 11,5% de resultados considerados “incertos”; 
• 72,8% de reconhecimentos corretos. 
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Na segunda base de dados (std) os resultados foram: 
• 11,7% de resultados incorretos, sendo 9,1% falsos 

positivos e 2,6% de falsos negativos; 
• 7,8% de resultados considerados “incertos”; 
• 80,5% de reconhecimentos corretos.  

Estes resultados são os mais importantes obtidos neste estudo 
pois demonstram que a inteligência artificial desenvolvida de 
fato funciona.   

A grande quantidade de falsos positivos em ambas as bases 
de dados demonstra que esta inteligência teria dificuldades para 
ser aplicada em sistemas de segurança. A fim de resolver este 
imbróglio, pode-se utilizar, paralelamente, outros métodos de 
segurança com baixa correlação com a CNN aplicada que possa 
aumentar o grau de certeza das decisões. Poderia também ser 
elevado o valor de K, cujos efeitos são explorados na seção 
IV.E. 

A utilização de somente dois métodos não correlacionados 
com taxa de falsos positivos semelhante à deste trabalho (5,7%) 
alcançaria uma nova taxa de somente 0,32%. Portanto este 
trabalho pode ser apresentado, sob esta ótica, no presente 
estado. Além disso, um desenvolvimento no alinhamento 
prévio à MTCNN é também uma opção para melhorar o 
desempenho. 

A. Tempo de cadastramento e execução 
 A fim de realizar o reconhecimento é necessário que cad 
esteja completamente convertida em vetores. Esta conversão foi 
considerada como o procedimento de cadastramento. Este é 
simplesmente o processo de detectar todas as faces na base de 
dados e vetorizá-las. 
 A execução, por outro lado, trata-se de detectar rostos em 
uma imagem, vetorizá-los e reconhecê-los, como na Figura 
III.1. 
 O CPU utilizado foi um Intel core i7 3770k a 3,5GHz 
acompanhado de 8GB de memória RAM a 1333MHz, um SSD 
com velocidade 450MB/s e uma placa de vídeo Nvidia GTX 
660. A Tabela I consolida os resultados de tempos de 
cadastramento e execução, para o algoritmo desenvolvido e 
para a base de dados que possui 52 identidades. 

 O tempo total de reconhecimento de uma pessoa demonstra 
que a execução é feita em tempo hábil. Assim, este sistema 
serviria para a maioria dos sistemas de segurança deste ponto 
de vista. 
 Uma possível melhoria que pode ocorrer é otimizar a 
velocidade do processo de detecção, visto que este ocupa mais 
da metade do tempo que o algoritmo necessita para reconhecer 
um indivíduo.  

 Mesmo assim, aplicações como [24] (cujo código é a base de 
[5]) e [17] se utilizam de HAAR Cascade para a detecção, que 
consegue realizar detecção em tempo real com uma taxa de 10-
25 frames por segundo. Tal fato serve para exacerbar a melhoria 
que seria necessária para que o algoritmo de MTCNN aplicado 
no presente trabalho alcançasse a velocidade de processamento 
do método concorrente. 

B. Problema com Identificação de Asiáticos e Crianças 
 Duas falhas relevantes encontradas nos resultados ficam 
aparentes ao analisar-se, especificamente, as fotos de pessoas 
de etnias orientais e de crianças.  

Tal amostragem foi obtida num estudo particular sobre o viés 
étnico e etário do algoritmo. Em busca do motivo da alta 
quantidade de falsos positivos, encontrou-se que, para adultos 
de etnias europeias, americanas e africanas, a taxa de 
reconhecimento se mantém próxima da média em 1 desvio 
padrão. 

Entretanto, com asiáticos, os resultados obtidos foram: 
• 50,0% de reconhecimento assertivo; 
• 10,7% de resultados “incertos”; 
• 39,3% de falsos positivos. 

 Tal número altíssimo de falsos positivos indica que este 
mesmo algoritmo tem um viés étnico em relação a essas 
pessoas. É provável que tal viés seja fruto da base de dados de 
treinamento de [19]. Sendo este o caso, um novo treinamento 
poderia resolver tal problema.  
 Além deste viés, encontrou-se também que o algoritmo é 
pouco eficaz para diferenciar crianças. Este resultado também 
se deve, provavelmente, a um viés incluso na base de dados de 
treinamento. A taxa de acerto do teste etário com crianças foi 
de apenas 33,3%. 
 Mais especificamente viéses etários e étnicos são frutos de 
uma base de dados quando esta possui poucos exemplos destes 
para treinamento da rede neural de reconhecimento. Isto é um 
problema, pois o algoritmo não foi treinado para diferenciar 
essas pessoas e apresentará, como é o caso, uma performance 
inferior em relação a estas. 

C. Acertos Desafiadores 
 A Figura IV.1 traz a atenção, por outro lado, a resultados 
difíceis que geraram acertos.  

 
Figura IV.1 - Acertos considerados difíceis realizados pela 

rede neural 

TABELA I 
RESULTADOS DE CADASTRAMENTO E EXECUÇÃO 

Grandeza Resultado 
Tempo médio de cadastramento por 
identidade com 3 imagens no banco 
de dados 

1,150 s 

Tempo médio de detecção e 
vetorização por imagem 

0,383 s 

Tempo médio de Detecção por 
imagem 

0,301 s 

Tempo médio de Execução do KNN 
por identidade detectada 

0,209 s 

Tempo total para reconhecer uma 
pessoa 

0,592 s 
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 Especificamente, tem-se em IV.1.1 a foto de uma pessoa 
utilizando óculos, chapéu e em condições de baixa iluminação. 
As duas fotos seguintes (IV.1. 2 e IV.1.3) são de uma pessoa 
cujo irmão gêmeo univitelino também está cadastrado na base 
de dados. A foto IV.1.4 testa uma situação com baixa qualidade 
da imagem de uma pessoa usando óculos, onde a rede neural foi 
capaz de atravessar o score mínimo de 50%. A foto IV.1.5 
mostra uma pessoa que foi cadastrada sem maquiagem, mas 
está bastante diferente nesta foto devido à presença desta. 
Finalmente, na sexta foto tem-se o reconhecimento de uma 
pessoa maquiada em uma foto tirada em sua infância. 
 Estes resultados demonstram que a rede neural é capaz de 
identificar pessoas em situações em que até humanos teriam 
dificuldade, e que é um resultado também obtido por [2], visto 
que na LFW a arquitetura FaceNet alcançou 99,63% de acertos 
enquanto o resultado mediano humano é de 97,53% de acertos 
[1]. 

D. Erros Esperados 
 A diferenciação entre gêmeos e o reconhecimento de pessoas 
em fotos de baixa qualidade são desafios enfrentados por todos 
os algoritmos de reconhecimento facial [25]. Neste trabalho, 
obtiveram-se resultados que seguem esta tendência. 
 Os resultados relacionados à baixa resolução de imagens 
foram analisados de forma qualitativa e mostram que, à medida 
que a resolução diminuiu, o score diminui e a quantidade de 
falsos positivos e negativos aumenta. Um exemplo deste padrão 
de resultados é representado pela Figura IV.2. 

 
Figura IV.2 - Mesma imagem reconhecida com resoluções 

diferentes 

 Esta conclusão é válida visto que a foto da direita alcançou 
um score 7,0% maior e possui mais alta resolução. Logo, quanto 
melhor for a câmera utilizada para o reconhecimento, melhor 
será sua performance. 
 Os resultados com gêmeos, por outro lado, podem ser 
encontrados na Tabela II. 

TABELA II 
TESTE COM IRMÃOS GÊMEOS 

Grandeza Resultado 
Acertos 2 

Falsos Positivos 1 
Unsures 5 

  

 
 Fica claro que este algoritmo tende a gerar unsures para 
gêmeos, o que faz sentido pois até para o olho humano é difícil 
diferenciá-los.  

Além disso, pode-se afirmar que qualquer base de dados que 
se utilize de uma amostra da população em geral, como 
distribuição, estará enviesada contra gêmeos. Isto decorre da 
regularização dos algoritmos de otimização, que os impedirá de 

alcançar o nível de variância necessária para diferenciar pessoas 
bastante semelhantes. 

Uma forma possível de resolver este problema é cadastrar na 
base de dados uma flag que indique se a pessoa tem uma irmã 
ou irmão gêmeo univitelino. Desta forma, quando o algoritmo 
gerar um positivo ou unsure cuja distância aponta para 
identidades cadastradas como gêmeos, ele poderá atravessar 
estes resultados por uma nova rede neural, que seria treinada 
especificamente para diferenciar gêmeos, melhorando, assim, 
os resultados finais. 

E. Comparação entre valores de K 
Como mencionado em III.D, a escolha de K se deu como 

K=2 uma vez que entre os valores possíveis esta se mostrou um 
bom meio termo entre a geração de falsos positivos e o 
desempenho de assertividade do reconhecimento. Os valores 
possíveis para K são 1, 2 e 3, uma vez que cada identidade 
possui 3 fotos cadastradas. 

Foi feita então a comparação para os valores de K para a base 
de dados std. A Figura IV.3 traz uma representação gráfica das 
mais importantes métricas para os valores possíveis de K na 
base de dados std. 

 
Figura IV.3 - Comparação de diferentes métricas para valores 

de K 

Percebe-se que este resultado confirma a previsão feita 
durante o processo de desenvolvimento sobre o tradeoff entre 
assertividade e falsos positivos. No entanto, não se observou um 
aumento significativo na quantidade de resultados incertos, 
visto que Dist3 é comumente maior que 1.00, então, tende a 
gerar mais negativos.  

Esta escolha dependerá do que exige cada aplicação da 
presente arquitetura, demonstrando a adaptabilidade deste 
sistema desenvolvido para diferentes situações. Outra 
possibilidade seria cadastrar mais fotos para cada usuário e, 
desta forma, aumentar o valor de K sem necessariamente 
diminuir a performance do sistema. 

Vale destacar que foi alcançado um melhor resultado, do 
ponto de vista de sistemas de segurança com foco em reduzir 
falsos positivos, com um valor de K=3. Isto decorre da redução 
dos falsos positivos em 76,9% em relação à arquitetura utilizada 
(K=2).  

Ainda assim, a escolha de K=2 se sustenta, pois, este sistema 
demonstrou ser uma escolha intermediária entre a geração de 
falsos positivos e o desempenho de assertividade do 
reconhecimento. 
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V. CONCLUSÕES 
O estudo foi capaz de reproduzir resultados satisfatórios de 

reconhecimento facial, alcançando 87% de acertos em uma 
determinada base de dados. Desta forma, provou-se que a rede 
neural convolucional FaceNet é aplicável em ambientes 
acadêmicos com limitado poderio computacional.  

Além disso, o conhecimento profundo da arquitetura CNN 
propiciou que discussões fossem feitas acerca de possíveis 
vieses de treinamento e pontos de melhoria no sistema. 

O alto número de falsos positivos, no entanto, representa um 
obstáculo que este algoritmo deve ultrapassar antes de ser 
implementado para sistemas de segurança. 

VI. AGRADECIMENTOS 
Agradeço ao CEFET-MG por me proporcionar estes anos de 

aprendizado. Ao professor orientador Anthony Chiaratti por 
toda a paciência, apoio e insights. Ao professor co-orientador 
Túlio Carvalho pela vital participação na idealização deste 
projeto. À minha irmã Maria Fernanda, aos meus pais Francine 
e Cassiano e aos meus avós Edna e Ronaldo por todo apoio e 
compreensão que foram necessários na realização deste 
trabalho. 

VII. REFERÊNCIAS BIBLIOGRÁFICAS 
[1] Y. Taigman, M. Yang, M. Ranzato & L. Wolf. “DeepFace: Closing the 

Gap to Human-Level Performance in Face Verification”. IEEE Conf. on 
CVPR, 2014. 

[2] F. Schroff, D. Kalenichenko, J. Philbin, “FaceNet: A Unified Embedding 
for Face Recognition and Clustering”. IEEE Conf. on CVPR, 2015. 

[3] Dias, M. V., “Desenvolvimento de uma Rede Neural de Visão 
Computacional conectada à Nuvem”, Trabalho de Conclusão de Curso I, 
CEFET-MG, 2019. 

[4] University of Massachusetts, “Labeled Faces in The Wild Results”, 
[Online]. Disponível:  
http://vis-www.cs.umass.edu/lfw/results.html#hdlbp, 2018 

[5] Brum, A. L., & Oliveira, M. C., “Face Unlock: Uma aplicação de Visão 
Computacional”. Iniciação científica, 2018, CEFET-MG. 

[6] G. B. de Castro, “Solução para Contagem de Pessoas em Espaços 
Públicos Usando Visão Computacional”, Trabalho de Conclusão de 
Curso II, CEFET-MG, 2019. 

[7] A. L. Brum, M. C. Oliveira, A. d. Almeida, “Interferência da Maquiagem 
e Acessórios no Reconhecimento Facial”. Febrar, 2018. 

[8] D. Chen, X. Cao, F. Wen, J. Sun, “Blessing of Dimensionality: High-
dimensional Feature and its Efficient Compression for Face 
Verification”. IEEE Conf. on CVPR, 2013. 

[9] R. Szeliski, “Computer Vision: Algorithms and Applications”. Springer, 
Disponível: http://szeliski.org/Book/, 2010. 

[10] A. Ng. “Convolutional Neural Networks”, Disponível: 
https://www.coursera.org/learn/convolutional-neural-
networks/home/welcome, 2017. 

[11] K. Collins-Thompson, “Applied Machine Learning in Python”. Coursera, 
2017, Disponível: https://www.coursera.org/learn/python-machine-
learning/home/welcome 

[12] A. Ng, “Neural Networks and Deep Learning”. Coursera, 2017, 
Disponível: https://www.coursera.org/learn/neural-networks-deep-
learning/home/welcome 

[13] M. Cavaioni, “DeepLearning series: Convolutional Neural Networks”. 
Medium, 2018, Disponível: https://medium.com/machine-learning-
bites/deeplearning-series-convolutional-neural-networks-a9c2f2ee1524 

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Aguelov, D. Erhan, 
V. Vanhoucke, A. Rabinovich, “Going Deeper With Convolutions”. IEEE 
Conf. on CVPR, 2015.  

[15] C. Szegedy, S. Joffe, V. Vanhoucke, A. Alemi, “Inception v-4, Inception-
ResNet and the Impact of Residual Connections on Learning”. 
arXiv:1602.07261v2, 2016.  

[16] A. Ng, “Improving Deep Neural Networks: Hyperparameter tuning, 
Regularization and Optimization”. Coursera, 2017. Disponível: 
https://www.coursera.org/learn/deep-neural-network/home/welcome 

[17] H. Taniai, “Facenet implementation by Keras2”, 2018, Repositório 
GitHub, https://github.com/nyoki-mtl/keras-facenet. 

[18] N. Bourbaki, "Chapters 1–5". Topological vector spaces. Springer, 1987. 
[19] D. Sandberg, “Face Recognition using TensorFlow”, 2018, Repositório 

GitHub, https://github.com/davidsandberg/facenet 
[20] I. de P. Centeno, “MTCNN face detection implementation for TensorFlow, 

as a PIP package”, 2018, Repositório GitHub, 
https://github.com/ipazc/mtcnn. 

[21] K. Zhang, Z. Zhang, Z. Li, Y. Qiao, “Joint Face Detection and Alignment 
using Multi-Task Cascaded Convolutional Networks”,  IEEE Signal 
Processing Letters, Vol.: 23 , no.: 10, Out. 2016. 

[22] M. V. Dias, “Repository for Face Recognition Thesis”, 2020, Repositório 
GitHub, https://github.com/Mattveloso/DeepFaceRecThesis 

[23] J. Browniee, “How to develop a Face Recognition System Using FaceNet 
in Keras”. 2019, Disponível: https://machinelearningmastery.com/how-
to-develop-a-face-recognition-system-using-facenet-in-keras-and-an-
svm-classifier/ 

[24] J. Le, “Use Python and Open CV to recognize multi face and show the 
name”, 2017, Repositório GitHub, 
https://github.com/trieutuanvnu/Raspberry-Face-Recognition 

[25] A. Afaneh, F. Noroozi, Ö. Toygar, “Recognition of identical twins using 
fusion of various facial feature extrators”. EURASIP Journal on Image 
and Video processing, 2017. 


	I. Introdução
	II. Revisão Bibliográfica
	A. Visão Computacional e o Reconhecimento facial
	A.1) Falsos Positivos e Falsos Negativos

	B. Treinamento de Redes Neurais
	C. Redes Neurais Convolucionais
	D.  Arquitetura Inception-Residual
	E. Algoritmo de otimização: Batch Normalization e Dropout
	F. Distância L2 (Norma Euclidiana)
	G. Detecção via redes neurais

	III. Metodologia
	A. A Rede Neural
	B. CNN de Vetorização para reconhecimento: FaceNet Inception-Residual
	B.1) Arquitetura FaceNet
	B.2) Treinamento da arquitetura FaceNet
	B.3) Detalhamento da arquitetura NN3 modificada

	C. Arquitetura MTCNN de detecção
	D.  Algoritmo de reconhecimento: Análise algébrica dos vetores em pós processamento
	E. Python, Keras e GitHub

	IV. Resultados e Discussões
	A. Tempo de cadastramento e execução
	B. Problema com Identificação de Asiáticos e Crianças
	C. Acertos Desafiadores
	D. Erros Esperados
	E. Comparação entre valores de K

	V. Conclusões
	VI. Agradecimentos
	VII. Referências bibliográficas

